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Abstract

The increasing trends of energy demand and renewable integration call for new and advanced approaches to energy

management and energy balancing in power networks. Utilities and network system operators require more assist-

ance and flexibility shown from consumers in order to manage their power plants and network resources. Demand

response techniques allow customers to participate and contribute to the system balancing and improve power qual-

ity. Traditionally, only energy-intensive industrial users and large customers actively participated in demand response

programs by intentionally modifying their consumption patterns. In contrast, small consumers were not considered in

these programs due to their low individual impact on power networks, grid infrastructure and energy balancing. This

paper studies the flexibility of aggregated demands of buildings with different characteristics such as shopping malls,

offices, hotels and dwellings. By using the aggregated demand profile and the market price predictions, an aggregator

participates directly in the day-ahead market to determine the load scheduling that maximizes its economic benefits.

The optimization problem takes into account constraints on the demand imposed by the individual customers related to

the building occupant comfort. A case study representing a small geographic area was used to assess the performance

of the proposed method. The obtained results emphasise the potential of demand aggregation of different customers

in order to increase flexibility and, consequently, aggregator profits in the day-ahead market.
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1. Introduction1

Demand side flexibility is gaining importance due to2

the rise in distributed renewable generation, increasing3

energy demand, and lower predictability in the electri-4

city markets. A high level of demand flexibility is cru-5

cial in order to cope with less predictable energy flows,6

and mitigate against price volatility. It is also required to7

create a level playing field for emergent market services8

and to maintain a secure network and a high-quality sup-9

ply of electricity [1]. The economic benefit of DR is10

based on its ability to substitute peak power generation11

capacity and on its competitiveness compared with short12
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to medium-term storage technologies [2]. Moreover,13

temporal variations in DR application highlight the par-14

ticular importance of load profiles in the assessment of15

DR potential.16

Traditionally, only large industrial customers had ac-17

cess to Demand Response (DR) schemes, selling their18

flexibility and participating in the electricity market on19

an individual basis. In contrast, smaller residential and20

commercial customers generally have not participated21

in the markets to date, as their individual demands were22

considered too low to have an effect at the system level.23

However, the demand flexibility offered to the electrical24

system can be greatly increased by aggregating these25

smaller loads. In this way, an aggregator may act as26

a market intermediary [3] that encourages smaller cus-27

tomers to increase their DR contributions (or to directly28

control their flexible loads) and trades their flexibility29

(as portfolio optimization) in electricity markets.30

A good overview on the most common DR method-31

ologies can be found in [4, 5, 6]. Demand flexibility32
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Nomenclature

Indices

k time interval to compensate flexible load, h

t time interval, h

Variables

P
pback

k,t
payback power at k from non-residential flex-

ible energy taken at t, kW

P
f lex
t non-residential flexible demand taken at t,

kW

Pload
t total demand bid in the market at t, kW

Pnresi
t net flexible non-residential demand from

heating and cooling loads at t, kW

Presi
t shiftable demand from residential electrical

devices at t, kW

Constants and data

πt electricity market price at t, AC/kWh

d duration of the market time period, h

Eresi daily shiftable residential energy, kWh

Nh optimization horizon

Nk maximum time for flexible load payback

Ns number of periods for residential load shift-

ing

P
com f
t Non-residential demand from the use of the

comfort temperature in period t, kW

P
agnr
t , P

agnr
t upper and lower limits of the aggregate

non-residential demand at t, kW

P
agr
t , P

agr
t upper and lower limits of the aggregate

residential demand at t, kW

P
tag
t , P

tag
t upper and lower limits of the total aggreg-

ate demand at t, kW

in the residential sector can be achieved by using com-33

mon household appliances (e.g. washing machines, dry-34

ers, dishwashers, etc.), electric vehicles or heating sys-35

tems [7]. Previous research has examined the provision36

of demand flexibility through scheduling of home ap-37

pliances [8, 9], or through user responses to time-of-38

use electricity pricing [10, 11]. Domestic thermal loads39

such as electric water heaters have also been applied40

as flexible demand resources, particularly in colder cli-41

mates [12, 13].42

In commercial buildings heating, ventilation and air-43

conditioning (HVAC) demands represent suitable can-44

didates for DR [14, 15]. Building thermal dynamics al-45

lows demand flexibility to be introduced by temporarily46

changing indoor temperature conditions without redu-47

cing occupant comfort. A number of papers focus on48

demand flexibility from HVAC systems in both residen-49

tial and non-residential buildings. In [16], the electri-50

city consumption during specific hours of a day is either51

maximized or minimized by adjusting the HVAC load,52

while maintaining thermal user comfort. In [17], the po-53

tential impacts of the individual responsive appliances54

were studied and the results revealed that almost all the55

benefits could be achieved by harnessing the flexibility56

of heating and ventilation systems, although this study57

was conducted in a Nordic country.58

A key consideration in such studies is the impact of59

adjustments in HVAC control setpoints on user comfort.60

The international standards ISO 7730:2005 [18] and61

ASHRAE 55:2013 [19] deal with indoor climate and62

the range of factors which influence user comfort levels.63

These standards provide guidelines on acceptable build-64

ing temperature levels, and also provide information on65

what temporary excursions from the standard temperat-66

ure ranges are can be allowed without adversely impact-67

ing user comfort.68

Many works quantify flexibility from commercial69

buildings (e.g. offices), but few of them use it in the70

electricity market. In [20], a methodology for comput-71

ing the flexibility of buildings and its cost is proposed72

and a case study on an office building reveals a large73

variation in both flexibility and cost depending on time,74

weather, utility rates, building use and comfort require-75

ments. In [21], a coordination framework for leveraging76

demand flexibility from buildings is proposed, and the77

demand flexibility of an office building is quantified,78

finding difficulties in achieving tasks’ shift-ability and79

lack of significant price differentiation between off-peak80

and peak periods.81

In [22], the aggregation of detached houses is car-82

ried out to investigate the benefit of heating load flex-83

ibility for the aggregator and the consumers in the Nor-84

dic day-ahead market. Consumer participation is rewar-85

ded with flexibility or comfort based bonuses. How-86

ever, the results are optimistic because it assumes per-87

fect forecasts for demand, spot prices, and residual sup-88
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ply curves. Also, it shows that flexibility provides more89

benefit when it is optimized with inflexible demand90

and that massive building structures receive more bo-91

nus, whereas efficient insulation tends to decrease the92

amount of bonus.93

In this work, the aggregator is assumed to be an en-94

tity representing the role of a retailer, a flexibility man-95

ager and a balance responsible party or market agent.96

A more detailed explanation of these functions can be97

found in [23, 24, 25]. This entity agrees with its cus-98

tomers to directly control their electricity consumption99

of their flexible loads (HVAC loads from commercial100

customers and smart appliances from residential cus-101

tomers) [26, 27]. These flexible demands can be shifted102

along a given time period depending on the nature of103

the process [28], but the amount of daily energy to be104

consumed is known and previously agreed between the105

aggregator and its customers. This type of agreement is106

not considered in the work proposed here. At last, it is107

assumed the non-residential customer thermal comfort108

is ensured by the control of the indoor temperature that109

depends on the building thermal inertia, time, weekday,110

season and occupancy pattern.111

To measure the demand flexibility of the aggregation112

of different buildings, we use the demand flexibility ra-113

tio that is the difference between the upper and lower114

limits of the aggregated demand regarding the total flex-115

ible demand at a certain time. The demand flexibility ra-116

tio and the aggregator daily average profit from its par-117

ticipation in the day-ahead market will be analysed by118

using a case study based on the aggregation of different119

building types. The optimal demand will be disaggreg-120

ated to simulate the impact of the optimal load schedul-121

ing on individual buildings. It will be shown the indoor122

temperatures remain within the desired range even when123

there is no linear relation between the energy demand124

and the indoor temperature. The results will demon-125

strate that an adequate aggregation of different building126

types allows the aggregator to achieve significant eco-127

nomic profits in the day-ahead market.128

The main topics addressed in this work are listed129

as follows: 1) flexibility modelling of aggregated de-130

mands from buildings with different characteristics such131

as shopping malls, offices, hotels, and dwellings. Al-132

though the flexibility could be obtained from real data,133

the aggregator needs to forecast the possible hourly134

bounds of the flexible load types (HVAC and wash-135

ing machines), since every building demand has differ-136

ent consumption profiles and dynamics (consumer be-137

haviour, weather, season, etc). In this case the min-138

imum and maximum temperatures are used only to ob-139

tain the estimation of the demand flexibility used for the140

next day offer. However, once either positive or negat-141

ive flexibility is used the energy must be compensated142

during the following hours (as explained in the optimal143

scheduling section). Obviously, during this interval the144

demand flexibility does not coincide with the profile145

generated for the purpose of providing the demand flex-146

ibility offer. 2) An effective optimization model that147

takes into account the constraints over demand related148

to the building occupant comfort, and provides the op-149

timal load scheduling for the aggregator into daily mar-150

kets. The principal contribution of the paper is the com-151

bination of points 1) and 2). At last, the performance of152

the proposed method is assessed in a case study repres-153

enting a small geographic area. The demand flexibility154

ratio and the aggregator daily average profit from its par-155

ticipation in the day-ahead market are analysed for 16156

days during summer and winter periods, respectively.157

This paper is structured as follows. Section 2 presents158

the methodology used in this work. Section 3 provides159

a brief description of the Spanish day-ahead electricity160

market and the participation rules. Section 4 describes161

the simulation models used to determine the available162

demand flexibility in residential and non-residential163

buildings. Section 5 defines the mathematical optim-164

ization problem to be solved by the aggregator for the165

optimal demand scheduling. The considered case study166

with different building types is presented in Section 6167

and the obtained results are presented in Section 7. Fi-168

nally, in Section 8 the most important conclusions are169

drawn.170

2. Methodology171

In this paper, statistical data has been used to model172

the residential energy consumption as well as architec-173

tural characteristics, building usage, location, on-site fa-174

cilities, occupancy and economic data to model the non-175

residential energy consumption. In order to simulate176

a real market environment, the forecasted prices used177

in the paper were taken from Iberian day-ahead market178

data.179

In the proposed method, the aggregator firstly models180

and aggregates the flexible consumption of certain pro-181

cesses from their users to obtain the reference demand182

profile with its upper and lower bounds in order to man-183

age the flexibility according to its objectives. Then the184

aggregator uses the flexibility and the wholesale mar-185

ket price predictions as inputs in the optimization prob-186

lem that derives an optimal load scheduling. Finally,187

the aggregator submits the optimal load scheduling to188

the day-ahead market in order to minimize the energy189

cost or maximize its profit.190
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3. Electricity market191

Approximately two thirds of the energy consumed in192

the Spanish peninsular system is managed in the day193

ahead market by OMIE (OMI-Polo Español S.A., Span-194

ish electricity market operator). This body is in charge195

of collecting orders, clearing the markets and publish-196

ing results. The Spanish market is a part of the EU’s197

Internal Electricity Market, where electricity prices are198

set on a daily basis (every day of the year) at 12 noon,199

for the twenty-four hours of the following day. As de-200

scribed in [29], “the price and volume of energy over201

a specific hour are determined by the point at which202

the supply and demand curves meet, according to the203

marginal pricing model adopted by the EU, based on204

the algorithm approved for all European markets (EU-205

PHEMIA)”. Both results and rules can be found in206

[30, 31, 32].207

In the day ahead market, purchase and sale bids for208

day D must be sent to OMIE before the gate closure at209

12 a.m. of day D-1. After the daily market, six sessions210

of an adjustment (intraday) market take place along the211

day. The average interval between the gate-closure and212

the physical delivery of energy is 4.5 hours for these213

intraday markets.214

According to the current rules, the agents that can215

participate in these markets are producers, retailers, dir-216

ect consumers and international traders. Consumers and217

retailers can only buy energy in the daily market, al-218

though they can sell or buy energy in the intraday mar-219

ket to fit their actual consumption to the energy traded.220

If there is a difference between the two an imbalance oc-221

curs that must be paid at a higher price than the marginal222

price.223

Retailers must submit a bid for the energy they are224

interested in buying with the price assigned. Most of225

the demand is traded at the cap price from the Spanish226

market, 180 AC/MWh, which means that it is inflexible227

demand, not changing with price. Only a part of the228

consumption is offered at a price close to that of the229

market.230

4. Flexibility modelling231

Demand flexibility describes the customers’ ability to232

modify their energy consumption in response to an ex-233

ternal signal. Two simulation models have been used to234

determine the demand flexibility offered by residential235

and non-residential buildings.236

Figure 1: Principal steps in the applied residential energy consump-

tion modelling.

4.1. Flexibility in the residential sector237

Demand flexibility in the residential sector is con-238

sidered as relevant because of significant daily and sea-239

sonal variations of the observed loads. Nowadays, res-240

idential demand depends directly on the customer habits241

where comfort plays a decisive role in energy consump-242

tion. Flexibility in the energy demand can be achieved243

by incentivising changes in customer habits while re-244

ducing negative impacts on comfort as much as pos-245

sible. In the present paper the effects of a modified246

user behaviour have been determined by using a res-247

idential energy consumption model based on statistical248

data [33, 34].249

The model used estimates energy consumption of a250

household in three phases (see Fig. 1): generation of the251

household configuration, computation of the daily use252

of each appliance and calculation of the exact energy253

demand of each appliance. The different steps of the254

consumer energy demand model are based on a prob-255

abilistic approach by using basic appliance definitions256

and statistical data for the generation of the consump-257

tion data. The appliance definitions are not considered258

part of the model and have to be supplied externally.259

In the first step the consumer energy demand model260

determines the configuration of one or several house-261

holds. The number of devices of a certain appliance type262

in a household is computed by using a binomial distribu-263

tion in order to obtain certain variation around a desired264

average value. In the second step the consumer energy265

demand model computes the daily usage for each ap-266

pliance in the household, i.e. if and how many times267

a device is used on a particular day. The frequency of268

use of some appliances is influenced by seasonal factors269

and has been considered in the consumer energy de-270

mand model. In the third step the model determines the271

exact time-of-use for the appliances by exploiting the272

statistical data. At this stage, the power curve of each273

appliance and the overall consumer energy demand of274
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Figure 2: Energy consumption of a group of 1000 residential custom-

ers with average usage patterns (top) and modified usage patterns with

increased use of washing appliances at night hours (bottom).

a household are calculated with a sampling time of 15275

minutes.276

Flexibility in the residential sector can be then mod-277

elled as the difference between the demand of an ordin-278

ary customer and the demand of a user which has been279

incentivised to modify its energy consumption habits280

(commonly by providing economic benefits through281

time-of-use tariffs of dynamic pricing schemes). The282

previously described energy consumption model can be283

used to determine the possible demand variation result-284

ing from such a change in user behaviour (see Fig. 2 for285

an example based on modified usage patterns). The de-286

mand consists of a fixed part – the minimum demand,287

which does not depend on the considered changes in288

user habits – and a variable part represented by the flex-289

ibility as a consequence of changed customer consump-290

tion patterns (see Fig. 3).291

In the residential sector, demand flexibility is fre-292

quently obtained by changing the operation time of en-293

ergy intensive appliances such as washing appliances.294

Other approaches include modifications in the duty295

cycle of cold devices (e.g. freezers or refrigerators) or296

variations in the power level of lighting and other appli-297

ances.298

Figure 3: Demand flexibility of a group of 1000 residential customers

obtained from modified usage patterns for washing appliances.

Figure 4: Structure of the building energy estimation tool [36] used to

determine the non-residential building energy consumption.

4.2. Flexibility in non-residential sector299

Non-residential buildings contribute significantly to300

the total energy demand and account for up to 20 %301

of primary energy consumption [35]. Demand flexib-302

ility in the non-residential sector is frequently achieved303

by modifying the building operation conditions (such304

as HVAC temperature setpoints) within a certain pre-305

defined range. In this paper, the building energy es-306

timation tool developed in [36] is used to provide de-307

tailed demand profiles for commercial buildings (see308

Fig. 4). This tool includes a physical model of the309

building structure and a model of the behavioural pat-310

terns of its users, considering architectural characterist-311

ics, building usage, location, on-site facilities, presence312

of people and economic data. This flexible configura-313

tion allows modelling of a wide range of different build-314

ing types such as shopping malls, office buildings and315

hotels.316

The building energy estimation tool outlined in [36]317
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has been modified to include the building’s temperat-318

ure dynamics and thermal capacity in the energy de-319

mand estimation. Heating, ventilation and air condi-320

tioning (HVAC) systems represent good candidates for321

demand side management (DSM) strategies in the non-322

residential sector because of their most significant im-323

pact on energy consumption. Indoor temperature reg-324

ulation takes advantage of thermal inertia of buildings325

and can be used for prolonged load changes [37].326

The simulation tool can be used to determine the327

primary energy demands of a non-residential building328

for different indoor temperature references (see Fig. 5329

for an example). The applied indoor temperature refer-330

ence has an important impact on the energy demand and331

allows regulating the energy consumption of the build-332

ing. The building manager is who chooses the indoor333

temperature references to guarantee a high comfort level334

taking into account the energy consumption and the as-335

sociated costs, for instance, from 09:00 to 22:00 for a336

commercial center, there is a more comfortable indoor337

temperature but, the remaining hours of the day it al-338

lows a higher indoor temperature for summer or lower339

for winter, which reduces the consumption. The energy340

demands achieved with the minimum and maximum in-341

door temperature references represent the limits of the342

available demand flexibility (see Fig. 6), i.e. the control-343

lable range of the building energy demand. It should be344

noted that the maximum building energy demand does345

not necessarily correspond to the maximum indoor tem-346

perature reference.347

Building occupant comfort (as defined in [18]348

and [19]) is the limiting factor for demand flexibility349

in the non-residential sector when HVAC systems are350

used. Any temporary modifications in heating, cool-351

ing and air conditioning have to be later compensated352

in order to preserve suitable indoor conditions. The re-353

latively slow thermal dynamics of buildings can be ex-354

ploited for peak load reduction or load shaping.355

Once all the individual flexibilities of all residential356

and non-residential loads are aggregated, the total de-357

mand flexibility and its maximum and minimum lim-358

its are known to the aggregator and can be used for the359

optimal scheduling according to the predicted market360

prices.361

5. Optimal Scheduling of Aggregate Demand362

This section introduces the mathematical formulation363

of the optimal scheduling for the aggregate demand.364

The optimization carried out by the local aggregator365

maximizes the economic benefit taking into account the366

available demand flexibility and the predicted market367

Figure 5: Energy demand of an office building on a workday with

low indoor temperature reference (top) and high indoor temperature

reference (bottom).

Figure 6: Demand flexibility of an office building obtained from vari-

ations of the indoor temperature reference.
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prices.Theaggregatorparticipatesdirectlyinthedaily368

electricitymarketandorderstherequiredenergyac-369

cordingtotheobtainedoptimalscheduling.370

Theoptimizationoftheaggregatedemandtakesinto371

considerationtheflexibilitypreviouslymodelledand372

calculatedinSection 4fromresidentialandnon-373

residentialcustomerswiththeirupperandlowerbounds374

foreachtimeperiod.Eventhoughitisdifficulttopre-375

dicttheflexibilitybeforehand,itmustbeknownbythe376

aggregatorinordertomanageitintheday-aheadmar-377

ket,minimizetheenergycostormaximizeitsprofit.378

Althoughthisflexibilitycanbecalculatedbydifferent379

methods,theoptimizationoftheaggregatedemandcon-380

sidersthefollowingtwotypesofflexibledemands:381

•Flexibleresidentialdemand:someelectricalappli-382

ancescanbeconnectedanddisconnectedatdif-383

ferentmomentsinadaydependingonthemarket384

pricesforecastandtheconsumerbehaviourfore-385

cast(flexibilitybounds).Somepartofthedemand386

canbe,therefore,shiftedalongagivenperiodof387

time,buttheamountofthedailyenergytobecon-388

sumedisknownandpreviouslyagreedbetweenthe389

aggregatorandtheresidentialconsumers.390

•Flexiblenon-residentialdemand:loadsthatadmit391

temporalvariationswithinacertainrange,mainly392

heatingandcoolingdemands. Theseloadshave393

apaybackintervalofafewhours[28],i.e.any394

loadreductionorincreasehastobecompensated395

inthefollowinghours.Thistypeofdemandhas396

animplicitrelationwiththecomforttemperature397

ofseveraldifferentnon-residentialbuildingscon-398

trolledbyathermostatdevice. Thus,consumer399

behaviour,buildingdynamicsandweathercondi-400

tionsconsideredintheforecastflexibilitymodel401

togetherwiththeforecastmarketpricesmustbe402

takenintoaccounttominimizetheenergycostin403

thedailymarket.404

Theoptimizationprocessdeterminesthemostfavour-405

ablepurchasecostoftheenergymadebytheaggregator406

inthedailymarket.Throughoutthepaper,weassume407

that1)theaggregatorisapricetaker,becausetheen-408

ergypurchaseddoesnotsignificantlyaffecttheresult-409

ingmarketprice;and2)theaggregatorbuysandsells410

energyatthesameprice,i.e.,networkaccesstariffsand411

taxeshavenotbeenincluded.Theusedformulationis412

linear:413

min
Nh

t=1

πtP
load
t d (1)

subjecttothefollowingconstraintsfort=1,...,Nhand
k=1,...,Nk:

Ns

t=1

Presit d=Eresi (2)

Pnresit =Pcomft −Pflext +
Nk

k=1

Ppbackk,t (3)

Ploadt =Presit +P
nresi
t , t=1,...,Nh (4)

Pflext =
Nk

k=1

Ppbackk,t+k, ∀k=1,...,Nk (5)

Nh

t=1

Pflext d=
Nk

k=1

Nh

t=1

Ppbackk,t d (6)

Ptagt ≤P
load
t ≤Ptagt, t=1,...,Nh (7)

Pagrt ≤P
resi
t ≤P

agr
t , t=1,...,Nh (8)

Pcomft −Pagnrt ≤Pflext ≤Pcomft −Pagnrt (9)

P
pback
k,t =0, ∀k≥t (10)

PflexNh =0 (11)

Theminimizationproblem(1)isbasedontheobject-414

ivefunctionrepresentedbythetotalenergycostsover415

theoptimizationhorizonconsideringvariablemarket416

prices.Theoptimalschedulingallowstheaggregatorto417

reducethecostofthepurchasedenergyintheelectricity418

market. Here,Ploadt includesflexibleandnon-flexible419

componentsthatarerepresentedbytheupperandlower420

limitsoftheaggregateload.421

Itisfollowedbytheconstraintsoftheprocess.Equa-422

tion(2)formulatestheconditionthattheshiftableres-423

identialdemandshouldbeprovidedinagivennumber424

ofhours,Ns,hereEresiisconsideredasafixedamount425

ofenergyperdaythatwasagreedbetweentheaggreg-426

atorandtheirresidentialconsumersthroughaprevious427

contract.Equation(3)definestheoptimalnetflexible428

non-residentialdemandthatcomesfromelectricalheat-429

ingandcoolingloads. Here,Pcomft isthehourlycon-430

sumptionifthecomforttemperaturehasbeensetforthe431

day,P
flex
t isthenon-residentialflexibleloadthatcould432

bepositiveornegativeifaloadreductionoraloadin-433

creaseisrequiredandisequivalenttodelayingorad-434

vancingtheoperationofheatingandcoolingprocesses435

and,thelasttermcorrespondstothepaidbackpower436

thatisdividedinNkvariablesatacertainperiodt,i.e.,437

ifNk=3wehavethevariablesP
pback
1,t ,P

pback
2,t andPpback3,t .438

Equation(4)definestheoptimaltotalloadPloadt ,439

whichistheresultoftheoptimizationprocessandis440

formedbyresidentialandnon-residentialdemands.441
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The condition that the non-residential flexible power442

taken in a specific period t should be paid back in the443

next t + k hours for the Nk variables is formulated in444

equation (5); for example if t = 1 and Nk = 3, then we445

have P
pback

1,2
, P

pback

2,3
and P

pback

3,4
. To ensure that the non-446

residential flexible energy taken for the day is balanced447

in the same day, the equation (6) is introduced. The rest448

of the equations set the limits of the variables, except449

the last two, which set the initial and final conditions.450

One should note that Pnresi
t includes a non-flexible com-451

ponent that is its lower limit and corresponds to the case452

where there is no heating or cooling consumption. Al-453

though the time slot has been one hour, according to the454

Spanish market features, the formulation could be ap-455

plied to any other time slot, d.456

6. Case study457

The performance of the proposed flexibility schedul-458

ing method (see Section 5) has been assessed in a case459

study representing a small geographic area. The region460

under consideration consists of 4000 residential custom-461

ers, 12 hotels, 8 office buildings and 2 malls. The ag-462

gregator combines the individual demands of the energy463

users and participates directly in the Spanish electricity464

market [38]. The regional energy demand is optimized465

by the aggregator with respect to economic objectives466

(see Section 5) taking into account the real-time energy467

prices of the electricity market and the available aggreg-468

ated flexibility of the customers.469

The simulations were carried out in the Matlab en-470

vironment by using realistic demand profiles obtained471

from the models of the residential and non-residential472

sector (see Section 4). In the case study, a maximum473

payback of three hours (Nk = 3) was used, i.e. load vari-474

ations induced by the optimization procedure had to be475

compensated within 1 to 3 hours. This value of Nk is in476

the range of other previous research [28, 39] and agrees477

with our own conclusions.478

Note that the flexibility model and the case study con-479

siders different sampling times of 15 minutes and 1 h,480

respectively. It is worth saying that for each house we481

used the average power value of the household con-482

sumption over one hour period and then aggregated a483

large number of houses providing an excellent approx-484

imation. Thus, the models are independent but not in-485

compatible.486

6.1. Demand Flexibility Considerations487

The individual demands in the considered area ex-488

hibit significant differences depending on the type of489

0 24 48 72 96 120 144 168
0

20

40

60

80

time [h]

de
m

an
d 

[k
W

]

 

 

minimum
maximum

Figure 7: Demand flexibility in the residential sector (100 customers)

for one week in winter obtained from modified energy consumption

patterns.

consumer connected. The admissible maximum and490

minimum loads define the flexibility that can be offered491

by each energy user.492

Residential customers usually have a moderate en-493

ergy consumption during daytime hours with a minor494

increase in the morning and a peak demand around din-495

ner time. During weekends energy consumption of res-496

idential customers is generally higher while the after-497

noon peak is substantially lower. In the case study498

demand flexibility in the residential sector has been499

achieved by modifying energy consumption patterns500

(see Fig. 7). It was assumed the users were incentiv-501

ized to shift operation of energy intensive appliances502

(i.e. washing machines, clothes dryers and dishwash-503

ers) to low demand periods (off-peak hours). Domestic504

thermal loads such as electric water heaters are import-505

ant flexible resources, particularly used in colder cli-506

mates [12, 13]. Nevertheless, our case study focuses507

on Spain, where their use is not very widespread and508

therefore they have been excluded from our analysis.509

The geographic area contains several hotels that have510

been modelled as typical medium-sized hotels focussed511

on city tourism with a high occupation throughout the512

year. Each hotel is located in a five storey building (15 m513

high, 35 m long, 20 m wide) with a modest thermal in-514

sulation. Each building is equipped with a heat pump,515

an additional electric space heating, a chiller and a solar516

water heating system. The indoor temperature is main-517

tained every day of the year from 8 am to 9 pm between518

20 oC and 24 oC. At other times, indoor temperature519

limits are reduced by 2 oC in winter and increased by520

2 oC in summer. Indoor temperature regulation within521

the given intervals is employed to add demand flexibil-522

ity (see Fig. 8) to the hotel’s energy system.523

The office buildings in the simulated region are rep-524

resented by seven storey buildings (21 m high, 43 m525
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Figure 8: Demand flexibility of a medium-sized hotel for one week in

winter obtained by using indoor temperature variations.
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Figure 9: Demand flexibility of an office building for one week in

winter obtained by using indoor temperature variations.

long and 15 m wide) with two additional basement526

levels used as a parking. On an ordinary workday ap-527

proximately 300 people do their work in each office528

building. Walls and roofs are well insulated and 60 %529

of the façades are covered by solar control windows.530

The installed HVAC systems include energy efficient531

heat pumps and chillers. During working hours indoor532

temperature is maintained between 20 oC and 24 oC.533

Outside office hours the permitted indoor temperature534

is reduced by 3 oC in winter and increased by 3 oC in535

summer. Indoor temperature variations within the men-536

tioned intervals convert part of the building load in a537

flexible demand (see Fig. 9).538

Large shopping malls are the third type of non-539

residential buildings considered in the simulation of a540

small geographic area. These buildings have only few541

windows in the external walls and a good thermal insu-542

lation to minimize the effect of variable ambient condi-543

tions. Each mall opens seven days a week from 9 am544

to 10 pm with a noticeable higher number of custom-545

ers on holidays and weekends than on workdays. Heat-546

ing, cooling and residential hot water is supplied by heat547

Table 1: Non-residential building data

Hotel Office Mall

Storey Buildings 5 7 –

High x Long x Wide (m3 ) 15x35x20 21x43x15 –

Thermal Insulation Modest Medium High

Indoor Temperature in Opening Hours 20-24◦C 20-24◦C 18-22◦C

Indoor Temperature in Closing Hours (Winter) 18-22◦C 17-21◦C 15-19◦C

Indoor Temperature in Closing Hours (Summer) 22-26◦C 23-27◦C 21-25◦C
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Figure 10: Demand flexibility of a mall for one week in winter ob-

tained by using indoor temperature variations.

pumps, chillers and solar collectors on the building roof.548

During opening hours the temperature in the malls is549

maintained in the range from 18 oC to 22 oC. When the550

malls are closed, i.e. from 10 pm to 9 am, the indoor551

temperature limits are reduced by 3 oC in winter and in-552

creased by 3 oC in summer. Flexibility in the mall’s en-553

ergy demand is achieved by modifying indoor temper-554

ature between permitted minimum and maximum tem-555

perature (see Fig. 10).556

A data summary is shown in Tab. 1. Note that open-557

ing hours for a hotel corresponds from 8 am to 9 pm.558

6.2. Aggregated energy demand559

The optimization algorithm has been developed for560

groups of buildings or local areas that include custom-561

ers from various sectors. The aggregation of residen-562

tial and commercial users with different energy con-563

sumption patterns allows increasing demand flexibility1
564

throughout the day.565

The overall demand considered in the case study is566

obtained by aggregating the individual loads of the en-567

ergy users (see Section 6.1 for the demands of the dif-568

ferent building types) in the simulated geographic area.569

1With the permitted maximum and minimum power at a certain

time the ratio of demand flexibility can be defined formally as:

F(t) =
max(P(t)) −min(P(t))

max(P(t)) +min(P(t))
(12)

which ranges from 0 (no flexibility) to 1 (high flexibility).
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Figure 11: Aggregated demand with lower and upper limits (top) and

resulting ratio of demand flexibility (bottom) for one week in winter.

The aggregate demand and the resulting flexibility for570

one week in winter is shown in Fig. 11. The lower and571

upper limits of the demand present two large peaks in572

the morning hours and in the late afternoon/early night573

hours. The corresponding flexibility varies between 0.1574

and 0.3 with maximum values during night.575

The minimum and maximum values of the aggregate576

demand for one week in summer are given in Fig. 12.577

The demand shows large variations over the day with578

low values at night and high values during the day, espe-579

cially in the afternoon. In contrast, the obtained flexib-580

ility is high at night (up to 0.4) and relatively low during581

the day (approximately 0.12). For the considered area,582

a generally higher demand flexibility can be observed in583

summer than in winter.584

6.3. Real-time pricing585

The real-time prices used in this case study are the586

wholesale market prices. In this case they are used as587

the market price predictions by the aggregator a day be-588

fore the actual time of energy delivery to the consumer.589

Note that these prices differ to the final prices paid by590

the end-users, which have not been addressed in this591

work, since the objective of it is to minimize the en-592

ergy procurement cost for the aggregator in the whole-593

sale market. The final price should include access fees594

and taxes, and the aggregator must take them into ac-595

count for the contractual arrangement with the custom-596

ers. The design of these conditions is out of the scope of597

this paper. In response to changes to energy prices, the598
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Figure 12: Aggregated demand with lower and upper limits (top) and

resulting ratio of demand flexibility (bottom) for one week in summer.

aggregator tries to adjust the aggregate consumption to599

maximize its own welfare. The day-ahead energy prices600

that correspond to the periods of the aggregate load on601

typical winter and summer days (January 14-29 and July602

1-16, 2013) are used from data of the Spanish wholesale603

electricity market [40]. The average energy prices dur-604

ing the 16 days analyzed in winter and summer were 5605

cAC/kWh and 4.5 cAC/kWh, respectively.606

7. Results607

Given the aggregate flexible loads, the solution to608

the optimization problem is the optimal scheduling that609

minimizes the cost of the purchased energy in the daily610

electricity market for the considered operation pro-611

cesses.612

The detailed results obtained with the proposed op-613

timization procedure applied to the aggregate demand614

of a small geographic area are given in Tab. 2. The eco-615

nomic profit shown represents the daily energy cost dif-616

ference between the non-optimized and the optimized617

case. The daily average profit for the considered area,618

achieved with the load scheduling based on flexibility,619

adds up to 97.9 AC in winter and 36.4 AC in summer. In620

addition to that, the ratio of demand flexibility determ-621

ined with (12) is displayed for each building cluster. It622

can be observed that the considered hotels, office build-623

ings and malls have a higher demand flexibility dur-624

ing summer. In contrast, residential customers exhibit625

a slightly increased demand flexibility in winter.626
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Table 2: Daily Average profit and rate of flexible consumption per

cluster of building

Winter Summer

Building Nro. Profit Flex. Profit Flex.

AC % 1 × 10−2
AC % 1 × 10−2

Hotels 12 10.7 11 1.9 4.8 13.1 3.1

Offices 8 10.4 10.6 2 4.4 12.2 2.8

Malls 2 31.4 32.1 5.7 13.4 36.9 8.8

Dwellings 4000 45.4 46.3 6.5 13.8 37.8 6.2

Total – 97.9 100 16.1 36.4 100 20.9

The electricity market price and its daily variations627

play an important role in the energy cost reduction628

based on optimal load scheduling. In the analyzed629

case study the observed difference between minimum630

and maximum prices is 2.4 cAC/kWh in summer and631

5.56 cAC/kWh in winter. The larger market price vari-632

ations during winter led directly to higher economic633

profits for each building type and the entire area. The634

higher demand flexibility of hotels, office buildings and635

malls during summer did not compensate the lower mar-636

ket price variations resulting in smaller benefits during637

the summer season.638

The aggregation of buildings is another factor to take639

into account for increasing flexibility and profits. The640

aggregation of 4000 dwellings results in a higher profit641

than 2 malls for the considered operation processes642

(electrical appliances for dwellings and heating and643

cooling loads for malls) as the consumption of heating644

and cooling of one mall is equivalent to the consumption645

of electrical appliances of 1854 and 3595 dwellings in646

winter and summer respectively. In the case of the ag-647

gregation of non-residential buildings as malls, hotels648

and offices (only heating and cooling loads), it can be649

observed in Tab. 2 that flexibility and profit of 2 malls650

are higher than flexibility and profit of 12 hotels and 8651

offices together. Moreover, there are more hotels than652

offices but the flexibility of one hotel is lower than the653

flexibility of one office. This why the profit and flexib-654

ility of the aggregation of these buildings do not differ655

much. Then, we can say that profit is proportional to the656

flexibility affected by the aggregation of buildings.657

Finally, the profit is affected by the flexibility, the ag-658

gregation of buildings and the market price. Addition-659

ally, the type of building that contributes more to the re-660

duction of the energy cost is the shopping mall followed661

by the office, hotel, and dwellings. In Fig. 13 and 14 the662

optimal scheduling for a sample day of winter and sum-663

mer are shown, it can be seen that the optimal aggreg-664

ated load follows the market price within its set limits.665

Although, in reality, the disaggregation does not only666

depend on the result of the optimization problem but667

also on the contract between the aggregator and each668
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Figure 13: Optimal aggregated flexible consumption and market price

for one workday in winter.
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Figure 14: Optimal aggregated flexible consumption and market price

for one workday in summer.
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Figure 15: Optimal demand (top) and indoor temperature (bottom) of

an office building for a workday in winter.

type of building. Here the optimal aggregated de-669

mand for the small geographic area under consideration670

was disaggregated and applied to the different building671

types. A ratio between the gap of the optimal aggregated672

demand and its lower bound regarding the gap of their673

upper and lower bounds was taken for the disaggrega-674

tion. This ratio is assumed constant for each aggreg-675

ated building. Then, the disaggregated demands were676

used to simulate the effect of the optimal load schedul-677

ing on individual buildings. The obtained optimal de-678

mand and corresponding indoor temperature of an office679

building for workdays in winter and summer are given680

in Fig. 15 and Fig. 16, respectively. It can be observed681

that the optimal load scheduling induces indoor temper-682

atures variations within the permitted range. It has to683

be underlined that the energy demand and the indoor684

temperature do not have a linear relationship, i.e. de-685

pending on the time of day and season a higher demand686

can lead to a temperature increase or temperature reduc-687

tion. This phenomenon can be observed in the summer688

results (see Fig. 16) where the permitted maximum de-689

mand between 2 am and 5 am leads to a high temper-690

ature (heating phase) while the high demand between691

2 pm and 6 pm results in a relatively low temperature692

(cooling phase).693
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Figure 16: Optimal demand (top) and indoor temperature (bottom) of

an office building for a workday in summer.

8. Conclusions694

This paper presents a method for optimal schedul-695

ing of aggregated demands based on an economic cri-696

terion. The optimization method uses the demand flex-697

ibility to optimally distribute the energy consumption698

of the customers. It was demonstrated the demand ag-699

gregation of buildings with different usage and proper-700

ties leads to a more equally distributed flexibility and701

allows users with relatively small loads to participate in702

the scheme. The aggregator participates directly in the703

wholesale electricity market and determines the optimal704

load scheduling to maximize its profits.705

The proposed method was validated by using a case706

study with different buildings located in the same small707

geographic area. The shopping malls, hotels, offices and708

dwellings were included with their specific consump-709

tion patterns dependent on the time, weekday and sea-710

son. In the residential sector demand flexibility was711

achieved by shifting the operation of energy-intensive712

appliances. In case of commercial buildings (malls, ho-713

tels and offices) indoor temperature variations within a714

given interval were used to obtain certain flexibility in715

the demand. The flexibility with respect to the aggreg-716

ated demand was between 10 % and 30 % in winter and717

between 12 % and 40 % in summer. The results showed718
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that the optimal scheduling shifts part of the aggregated719

demand from peak to off-peak periods. The economic720

benefit was considerably larger in winter than in sum-721

mer due to the high intraday price variations during the722

cold season of the year.723

The obtained results underline the potential of com-724

bining demand aggregation and optimal scheduling.725

The aggregator provides the option to close the tradi-726

tional gap between the day-ahead wholesale market and727

the individual customer. The proposed method helps the728

actual costs of power production to be passed on to the729

consumers and ensures access to fair electricity tariffs730

for all users.731
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