274 research outputs found

    Leptogenesis from Additional Higgs Doublets

    Full text link
    Leptogenesis may be induced by the mixing of extra Higgs doublets with experimentally accessible masses. This mechanism relies on diagrammatic cuts that are kinematically forbidden in the vacuum but contribute at finite temperature. A resonant enhancement of the asymmetry occurs generically provided the dimensionless Yukawa and self-interactions are suppressed compared to those of the Standard Model Higgs field. This is in contrast to typical scenarios of Resonant Leptogenesis, where the asymmetry is enhanced by imposing a degeneracy of singlet neutrino masses.Comment: 12 pages; more phenomenological details adde

    Case Study of Multiyear Precipitation Variations and the Hydrology of Fort Cobb Reservoir

    Get PDF
    Impacts of decadal precipitation variations on reservoir inflow, flood releases, and pool elevation were investigated for the Fort Cobb Reservoir, which controls runoff from a 787 km2 agricultural watershed in central Oklahoma. The difference in mean annual precipitation between multiyear dry and wet periods was 33% of the long-term mean and led to a corresponding 100% change in mean reservoir inflow, 170% change in mean annual flood releases from the reservoir, and a maximum drop in conservation pool elevation of 2 m. From a reservoir operations perspective, only the frequency of controlled flood releases was impacted by decadal precipitation variations. These flood releases were sporadic in nature, and the more frequent releases during wet periods were not believed to appreciably enhance stream habitat and riparian vegetation downstream of the reservoir. It was further reasoned that large differences in annual reservoir inflow due to decadal precipitation variations would likely be accompanied by related changes in upstream soil erosion and reservoir sediment loading. With regard to hydrologic and environmental modeling, it was argued that decadal precipitation variations had important implications for model calibration, verification, and subsequent application. Overall, this case study demonstrated watershed and reservoir hydrology were sensitive to decadal precipitation variations and suggested that decadal precipitation variations deserved careful consideration in hydrologic and water quality investigations in central Oklahoma

    Passive Chemical Dosing Apparatus for Construction Site Stormwater Turbidity Reduction

    Get PDF
    A project with the objective to design, construct, and test an automated, passive flocculant dosing system for implementation on a construction site was conducted. Simulated performance of alternative systems was compared through a modeling study to select and design a prototype. A prototype sized for a one acre construction site was tested in a flume with a solution of water and suspended sediment. The initial and resulting turbidities were measured at five locations in the flume with and without flocculant dosing for three different flow rates. The designed system included a forebay, a passive, flow-based dosing system, a turbulent mixing system to facilitate floc development, and a settling basin. Modeling simulations showed it was capable of maintaining flocculant dosing concentrations in predetermined ranges and had a unique relationship between stage in a flow control structure and flocculant dosing concentration. Field scale tests demonstrated the prototype dosing system operated as intended and the flocculant dosed by the system was able to reduce inflow turbidity from a cumulative average of 2760 NTU to 400 NTU (85% reduction) for all tests in the channel.Biosystems & Agricultural Engineerin

    Are serial CA 19-9 kinetics helpful in predicting survival in patients with advanced or metastatic pancreatic cancer treated with gemcitabine and cisplatin?

    Get PDF
    Background: Serial kinetics of serum CA 19-9 levels have been reported to reflect response and survival in patients with pancreatic cancer undergoing surgery, radiotherapy, and chemotherapy. We prospectively studied serial kinetics of serum CA 19-9 levels of patients with locally advanced or metastatic disease treated with gemcitabine and cisplatin. Patients and Methods: Enrolled in the study were 87 patients (female/male = 26/61; stage III/IV disease = 24/63). Patients received gemcitabine 1,000 mg/m(2) on days 1, 8, and 15 plus cisplatin 50 mg/m(2) on days 1 and 15, every 4 weeks. Serum samples were collected at the onset of chemotherapy and before the start of a new treatment cycle (day 28). Results: 77 of 87 patients (88.5%) with initially elevated CA 19-9 levels were included for evaluation. According to imaging criteria, 4 (5.2%) achieved a complete remission and 11 (14.3%) achieved partial remission, yielding an overall response rate of 19.5%. 43 (55.8%) patients were CA 19-9 responders, defined by greater than or equal to50% decrease in CA 19-9 serum levels within 2 months after treatment initiation. Except for one, all patients who had responded by imaging criteria (n = 14) fulfilled the criterion of a CA 19-9 responder. Despite being characterized as non-responders by CT-imaging criteria (stable/progressive disease), 29 patients were classified as CA 19-9 responders (positive predictive value 32.5%). Independent of the response evaluation by CT, CA 19-9 responders survived significantly longer than CA 19-9 non-responders (295 d; 95% CI: 285-445 vs. 174 d; 95% CI: 134-198; p = 0.022). Conclusion: CA 19-9 kinetics in serum serve as an early and reliable indicator of response and help to predict survival in patients with advanced pancreatic cancer receiving effective treatment with gemcitabine and cisplatin

    Unruh response functions for scalar fields in de Sitter space

    Full text link
    We calculate the response functions of a freely falling Unruh detector in de Sitter space coupled to scalar fields of different coupling to the curvature, including the minimally coupled massless case. Although the responses differ strongly in the infrared as a consequence of the amplification of superhorizon modes, the energy levels of the detector are thermally populated.Comment: 16 pages, 1 figure, accepted for publication by Classical and Quantum Gravit

    Textures and Semi-Local Strings in SUSY Hybrid Inflation

    Full text link
    Global topological defects may account for the large cold spot observed in the Cosmic Microwave Background. We explore possibilities of constructing models of supersymmetric F-term hybrid inflation, where the waterfall fields are globally SU(2)-symmetric. In contrast to the case where SU(2) is gauged, there arise Goldstone bosons and additional moduli, which are lifted only by masses of soft-supersymmetry breaking scale. The model predicts the existence of global textures, which can become semi-local strings if the waterfall fields are gauged under U(1)_X. Gravitino overproduction can be avoided if reheating proceeds via the light SU(2)-modes or right-handed sneutrinos. For values of the inflaton- waterfall coupling >=10^-4, the symmetry breaking scale imposed by normalisation of the power spectrum generated from inflation coincides with the energy scale required to explain the most prominent of the cold spots. In this case, the spectrum of density fluctuations is close to scale-invariant which can be reconciled with measurements of the power spectrum by the inclusion of the sub-dominant component due to the topological defects.Comment: 29 page

    Right-handed Sneutrinos as Nonthermal Dark Matter

    Full text link
    When the minimal supersymmetric standard model is augmented by three right-handed neutrino superfields, one generically predicts that the neutrinos acquire Majorana masses. We postulate that all supersymmetry (SUSY) breaking masses as well as the Majorana masses of the right-handed neutrinos are around the electroweak scale and, motivated by the smallness of neutrino masses, assume that the lightest supersymmetric particle (LSP) is an almost-pure right-handed sneutrino. We discuss the conditions under which this LSP is a successful dark matter candidate. In general, such an LSP has to be nonthermal in order not to overclose the universe, and we find the conditions under which this is indeed the case by comparing the Hubble expansion rate with the rates of the relevant thermalizing processes, including self-annihilation and co-annihilation with other SUSY and standard model particles.Comment: 17 pages v.2: References adde

    Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data

    Full text link
    We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and by improved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra (presented in a previous work) were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation. If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, f10< 0.095, and on their tension, G\mu< 0.57 x 10^-6, both at 95% confidence level using WMAP7 data; and f10 < 0.048 and G\mu < 0.42 x 10^-6 using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, ns=1, is now disfavoured at 2.4\sigma\ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings.Comment: 8 pages, 3 figures; Minor corrections, matches published versio

    D-term inflation in non-minimal supergravity

    Get PDF
    D-term inflation is one of the most interesting and versatile models of inflation. It is possible to implement naturally D-term inflation within high energy physics, as for example SUSY GUTs, SUGRA, or string theories. D-term inflation avoids the η\eta-problem, while in its standard form it always ends with the formation of cosmic strings. Given the recent three-year WMAP data on the cosmic microwave background temperature anisotropies, we examine whether D-term inflation can be successfully implemented in non-minimal supergravity theories. We show that for all our choices of K\"ahler potential, there exists a parameter space for which the predictions of D-term inflation are in agreement with the measurements. The cosmic string contribution on the measured temperature anisotropies is always dominant, unless the superpotential coupling constant is fine tuned; a result already obtained for D-term inflation within minimal supergravity. In conclusion, cosmic strings and their r\^ole in the angular power spectrum cannot be easily hidden by just considering a non-flat K\"ahler geometry.Comment: 29 pages, 9 figures; minor changes to match publihed versio

    ARS leptogenesis

    Get PDF
    We review the current status of the leptogenesis scenario originally proposed by Akhmedov, Rubakov and Smirnov (ARS). It takes place in the parametric regime where the right-handed neutrinos are at the electroweak scale or below and the CP-violating effects are induced by the coherent superposition of different right-handed mass eigenstates. Two main theoretical approaches to derive quantum kinetic equations, the Hamiltonian time evolution as well as the Closed-Time-Path technique are presented, and we discuss their relations. For scenarios with two right-handed neutrinos, we chart the viable parameter space. Both, a Bayesian analysis, that determines the most likely configurations for viable leptogenesis given different variants of flat priors, and a determination of the maximally allowed mixing between the light, mostly left-handed, and heavy, mostly right-handed, neutrino states are discussed. Rephasing invariants are shown to be a useful tool to classify and to understand various distinct contributions to ARS leptogenesis that can dominate in different parametric regimes. While these analyses are carried out for the parametric regime where initial asymmetries are generated predominantly from lepton-number conserving, but flavor violating effects, we also review the contributions from lepton-number violating operators and identify the regions of parameter space where these are relevant.Fil: Drewes, Alejandro Marcelo. Technische Universitat München; AlemaniaFil: Garbrecht, B.. Technische Universitat München; AlemaniaFil: Hernández, P.. Universidad de Valencia; España. Cern - European Organization For Nuclear Research; Suiza. Université Catholique de Louvain. Particle Physics and Phenomenology. Centre for Cosmology; SuizaFil: Kekic, M.. Universidad de Valencia; EspañaFil: Lopez-Pavon, J.. Cern - European Organization For Nuclear Research; SuizaFil: Racker, Juan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Rius, Natalia. Universidad de Valencia; EspañaFil: Salvado, J.. Universidad de Valencia; EspañaFil: Teresi, D.. Université Libre de Bruxelles; Bélgic
    • …
    corecore