9 research outputs found

    CERES-maize model for determining the optimum planting dates of early maturing maize varieties in northern Nigeria

    Get PDF
    Open Access JournalField trials were carried out in the Sudan Savannah of Nigeria to assess the usefulness of CERES–maize crop model as a decision support tool for optimizing maize production through manipulation of plant dates. The calibration experiments comprised of 20 maize varieties planted during the dry and rainy seasons of 2014 and 2015 at Bayero University Kano and Audu Bako College of Agriculture Dambatta. The trials for model evaluation were conducted in 16 different farmer fields across the Sudan (Bunkure and Garun—Mallam) and Northern Guinea (Tudun-Wada and Lere) Savannas using two of the calibrated varieties under four different sowing dates. The model accurately predicted grain yield, harvest index, and biomass of both varieties with low RMSE-values (below 5% of mean), high d-index (above 0.8), and high r-square (above 0.9) for the calibration trials. The time series data (tops weight, stem and leaf dry weights) were also predicted with high accuracy (% RMSEn above 70%, d-index above 0.88). Similar results were also observed for the evaluation trials, where all variables were simulated with high accuracies. Estimation efficiencies (EF)-values above 0.8 were observed for all the evaluation parameters. Seasonal and sensitivity analyses on Typic Plinthiustalfs and Plinthic Kanhaplustults in the Sudan and Northern Guinea Savannas were conducted. Results showed that planting extra early maize varieties in late July and early maize in mid-June leads to production of highest grain yields in the Sudan Savanna. In the Northern Guinea Savanna planting extra-early maize in mid-July and early maize in late July produced the highest grain yields. Delaying planting in both Agro-ecologies until mid-August leads to lower yields. Delaying planting to mid-August led to grain yield reduction of 39.2% for extra early maize and 74.4% for early maize in the Sudan Savanna. In the Northern Guinea Savanna however, delaying planting to mid-August resulted in yield reduction of 66.9 and 94.3% for extra-early and early maize, respectively

    Modelling the impacts of diverse cover crops on soil water and nitrogen and cash crop yields in a sub-tropical dryland

    Get PDF
    Open Access ArticleUnderstanding the implications of replacing fallows with cover crops on plant-available water (PAW) and soil mineral nitrogen (N) and their carry-over effects on subsequent cash crops is critical for understanding their potential for ecological intensification in water-limited environments. We modelled the impacts of different cover crop functional types over historical climate to predict how climate variability influences soil water and N acquisition and subsequent availability to a maize crop in a dryland farming system of subtropical Australia. Following local validation of simulation models (APSIM) with 3-site-years of field data, 70 years of crop-fallow rotations were simulated comparing conventional fallow against a diverse range of cover crops comprising monocultures and mixtures of grass vs. legume vs. brassica. Cover crops consistently reduced soil water and mineral N at maize sowing compared to conventional fallow. In dry to normal precipitation years, this induced a maize yield penalty of up to − 18% relative to fallow, primarily due to reduced water availability. In wet years, increased in maize grain yield (+4%) was predicted following legume and grass-associated cover crop mixtures with concomitant reductions in N leaching and soil surface runoff of up to 40%. Cash crop yields following grass-cover crops were more stable and carried lower downside risks; multi-species (grass-legume-brassica) cover crop mixtures carried higher yield penalties and greater downside risks due to high biomass accumulation and high soil water extraction. These long-term predictions in water-limited environments indicate that increasing cover crop complexity by using mixtures with diverse functional traits can lead to a greater risk of yield losses and increased yield instability unless they are managed differently to monoculture cover crops. Therefore, for successful integration of cover crops into dryland agroecosystems, cover crops should be considered as a flexible choice grown under favourable precipitation and economic scenarios rather than for continuous fallow replacement

    Optimizing sowing density-based management decisions with different nitrogen rates on smallholder maize farms in northern Nigeria

    Get PDF
    Open Access Article; Published online: 18 Jan 2021In this study, the CERES-Maize model was calibrated and evaluated using data from 60 farmers’ fields across Sudan (SS) and Northern Guinea (NGS) Savannas of Nigeria in 2016 and 2017 rainy seasons. The trials consisted of 10 maize varieties sown at three different sowing densities (2.6, 5.3, and 6.6 plants m−2) across farmers’ field with contrasting agronomic and nutrient management histories. Model predictions in both years and locations were close to observed data for both calibration and evaluation exercises as evidenced by low normalized root mean square error (RMSE) (≤15%), high modified d-index (> 0.6), and high model efficiency (>0.45) values for the phenology, growth, and yield data across all varieties and agro-ecologies. In both years and locations and for both calibration and evaluation exercises, very good agreements were found between observed and model-simulated grain yields, number of days to physiological maturity, above-ground biomass, and harvest index. Two separate scenario analyses were conducted using the long-term (26 years) weather records for Bunkure (representing the SS) and Zaria (representing the NGS). The early and extra-early varieties were used in the SS while the intermediate and late varieties were used in the NGS. The result of the scenario analyses showed that early and extra-early varieties grown in the SS responds to increased sowing density up to 8.8 plants m−2 when the recommended rate of N fertilizers (90 kg N ha−1) was applied. In the NGS, yield responses were observed up to a density of 6.6 plants m−2 with the application of 120 kg N ha−1 for the intermediate and late varieties. The highest mean monetary returns to land (US1336.1ha1)weresimulatedforscenarioswith8.8plantsm2and90kgNha1,whilethehighestreturntolabor(US1336.1 ha−1) were simulated for scenarios with 8.8 plants m−2 and 90 kg N ha−1, while the highest return to labor (US957.7 ha−1) was simulated for scenarios with 6.6 plants m−2 and 90 Kg N ha−1 in the SS. In the NGS, monetary return per hectare was highest with a planting density of 6.6 plants m−2 with the application of 120 kg N, while the return to labor was highest for sowing density of 5.3 plants m−2 at the same N fertilizer application rates. The results of the long-term simulations predicted increases in yield and economic returns to land and labor by increasing sowing densities in the maize belts of Nigeria without applying N fertilizers above the recommended rates

    Compositional nutrient diagnosis (CND) and associated yield predictions in maize: a case study in the northern Guinea savanna of Nigeria

    Get PDF
    Open Access Article; Published online: 17 Aug 2022Developing optimal strategies for nutrient management of soils and crops at a larger scale requires an understanding of nutrient limitations and imbalances. The availability of extensive data (n = 1,781) from 2-yr nutrient omission trials in the most suitable agroecological zone for maize (Zea mays L.) in Nigeria (i.e., the northern Guinea savanna) provides an opportunity to assess nutrient limitations and imbalances using the concept of multi-ratio compositional nutrient diagnosis (CND). We also compared and contrasted the use of linear regression models and bootstrap forest machine learning to predict maize yield based on nutrient concentration in ear leaves. The results showed that 35% of the experimental plots had low yields due to nutrient imbalances (hereafter referred to as low yield imbalanced [LYI]). These experimental plots were dominated by control plots (without any nutrients applied), plots without N fertilization, and plots without P fertilization. Using the control plot as the ultimate indicator of nutrient imbalance, the significantly limiting nutrients in order of decreasing frequency of deficiency were N, P, S, Ca > Cu, and B. Both linear regression and bootstrap forest machine learning models fairly predicted maize grain yield based on nutrient concentration in ear leaves only in the LYI group and when examining all data with an independent validation dataset. These results suggest that nutrient management strategies, especially through the site-specific management approach, should consider S, Ca, Cu, and B in addition to the existing nutrients N, P, and K to improve nutrient balance and maize yield in the study area

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Optimum stand density of tropical maize varieties: an on-farm evaluation of grain yield responses in the Nigerian Savanna

    Get PDF
    Open Access Journal; Published online: 24 Mar 2022Selection of appropriate sowing density is an important yield enhancing management decision in maize (Zea mays L.) production particularly in rainfed conditions. This study aimed at evaluating the optimum stand densities (OSDs) of 10 recently released maize varieties under different crop management decisions and environments. Ten maize varieties of varying characteristics were planted in the Northern Guinea Savanna of Nigeria across 30 farmer’s fields in the rainy seasons of 2016 and 2017 under three stand densities: 2.6, 5.3, and 6.6 plants m−2. Grain yield and yield components were greatest under the high density in both years across all locations. The intermediate maturing varieties produced higher grain yields compared to the early and late maturing varieties in both years and locations. The environmental indices from the Factor Analytic Model showed 20% of the fields were optimal, 28.3% moderate, 31.7% poor, and 20% were very poor environments. Increasing planting density did not significantly affect the grain yield of the varieties in very poor environments. A linear increase in grain yield was observed in moderate and optimum environments with every increase in stand density for all varieties except Sammaz 32, however, optimum planting densities could not be reached for all the varieties. Therefore, tropical maize varieties should be planted under specific densities that account for environmental and management conditions to maximize yield

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    No full text
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions. © Copyright

    Diminishing benefits of urban living for children and adolescents’ growth and development

    No full text
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified. © 2023, The Author(s)
    corecore