29 research outputs found

    Progress in conceptual design of EU DEMO EC system

    Get PDF
    Since 2014 under the umbrella of EUROfusion Consortium the Work Package Heating and Current Drive (WPHCD) is performing the engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems of the future fusion power plant DEMO. This presentation covers the activities performed in the last two years on the EC system conceptual design, as part of the WPHCD, focusing on launchers, transmission lines, system reliability and architecture

    High-efficiency, long-pulse operation of MW-level dual-frequency gyrotron, 84/126GHz, for the TCV Tokamak

    Get PDF
    The first unit of the dual-frequency gyrotron, 84126GHz/1MW/2s, for the upgrade of the TCV ECH system has been delivered and is presently being commissioned. During a first phase, long-pulse operation (TRF gt 0.5 mathrm{s}) has been achieved and powers in excess of 0.93MW/1.1s and 1MW/1.2s have been measured in the evacuated RF-load at the two frequencies, 84GHz (TE {17,5} mode) and 126GHz (TE {26,7} mode), respectively. Considering the different rf losses in the experimental setup, the power level generated in the gyrotron cavity is in excess of 1.1MW and 1.2MW, with a corresponding electronic efficiency of 35% and 36%. These values are in excellent agreement with the design parameters and would likely lead to a gyrotron total efficiency higher than 50% in case of implementation of a depressed collector. The gyrotron behavior is remarkably reliable and robust with the pulse length extension to 2s presently only limited by external auxiliary systems

    Progress in conceptual design of EU DEMO EC system

    Get PDF
    Since 2014 under the umbrella of EUROfusion Consortium the Work Package Heating and Current Drive (WPHCD) is performing the engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems of the future fusion power plant DEMO. This presentation covers the activities performed in the last two years on the EC system conceptual design, as part of the WPHCD, focusing on launchers, transmission lines, system reliability and architecture

    Recent progress in the upgrade of the TCV EC-system with two 1MW/2s dual-frequency (84/126GHz) gyrotrons

    Get PDF
    The upgrade of the EC-system of the TCV tokamak has entered in its realization phase and is part of a broader upgrade of TCV. The MW-class dual-frequency gyrotrons (84 or 126GHz/2s/1MW) are presently being manufactured by Thales Electron Devices with the first gyrotron foreseen to be delivered at SPC by the end of 2017. In parallel to the gyrotron development, for extending the level of operational flexibility of the TCV EC-system the integration of the dual-frequency gyrotrons adds a significant complexity in the evacuated 63.5mm-diameter HE11 transmission line system connected to the various TCV low-field side and top launchers. As discussed in [1], an important part of the present TCV-upgrade consists in inserting a modular closed divertor chamber. This will have an impact on the X3 top-launcher which will have to be reduced in size. For using the new compact launcher we are considering employing a Fast Directional Switch (FADIS), combining the two 1MW/126GHz/2s rf-beams into a single 2MW rf-beam

    ECH and ECCD modelling studies for DTT

    No full text
    In this work the Electron Cyclotron (EC) physics performances of the EC system foreseen for the new Divertor Tokamak Test facility (DTT) are investigated using the beam tracing code GRAY on the flat top phase of the most recent DTT full power scenario. The whole core plasma region can be reached by EC beams with complete absorption, assuring bulk heating and core current drive (CD) for profile tailoring, and NTM mitigation in correspondence of the rational surfaces. A detailed analysis regarding modifications of the EC propagation, absorption and CD location due to density fluctuations caused by pellet injection is performed. The compatibility between the EC system and the pellet injection system is verified: the density variations due to pellet injection are foreseen to negligibly influence the EC performances, allowing the EC beams to reach the plasma central region for bulk heating and to drive current on the rational surfaces for NTM mitigation. Finally, the polarization variations originated by the angle steering foreseen for the operational and physics tasks accomplishment during the flat top phase of the discharge are assessed. Negligible power losses have been found keeping fixed polarization during the needed steering

    Development of the Multi-Beam Transmission Line for DTT ECRH system

    No full text
    The DTT tokamak, whose construction is starting in Frascati (Italy), will be equipped with an ECRH system of 16 MW for the first operation phase and with a total of 32 gyrotrons (170 GHz, ≥ 1 MW, 100 s), organized in 4 clusters of 8 units each in the final design stage. To transmit this large number of power beams from the gyrotron hall to the torus hall building a Quasi-Optical (QO) approach has been chosen by a multi-beam transmission line (MBTL) similar to the one installed at W7-X Stellarator. This compact solution, mainly composed of mirrors in “square arrangement” shared by 8 different beams, minimizes the mode conversion losses. The single-beam QOTL is used to connect each gyrotron MOU output to a beam-combiner mirror unit and, after the MBTL, from a beam-splitter mirror unit to the exvessel and launchers sections located in the equatorial and upper ports of 4 DTT sectors. A novelty introduced is that the mirrors of the TLs are embodied in a vacuum enclosure, using metal gaskets, to avoid atmospheric absorption losses and microwave leaks. The TL, designed for up to 1.5 MW per single power beam, will have a total optical path length between 84 m and 138 m from the gyrotrons to the launchers. The main straight section will travel along an elevated corridor ~10 m above the ground level. The development of the optical design reflects the constraints due to existing buildings and expected neutron flux during plasma operation. In addition, the power throughput of at least 90% should be achieved

    Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    No full text
    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution
    corecore