67 research outputs found

    Economic Evaluation of Different Organizational Models for the Management of Patients with Hepatitis C

    Get PDF
    BACKGROUND: Access to Directly Acting Antivirals (DAAs) for Hepatitis C Virus (HCV) treatment in Italy was initially restricted to severe patients. In 2017, AIFA expanded access to all patients, to achieve elimination by 2030.AIM: To investigate the impact of different hospitals’ organizational models on elimination timing, treatment capacity and direct costs.METHODS: Most Regional healthcare systems in Italy deploy a Center of Excellence (CoE) organizational model, where patients are referred to a single major hospital in the area, which is the only one that can prescribe and deliver DAAs. The study was conducted at Bergamo’s (Lombardy, Italy) Papa Giovanni XXIII hospital (PG-23), which deploys a Hub&Spoke model: the Hub (PG-23) prescribes and delivers DAAs while Spokes (four smaller hospitals) can only prescribe them. The study compares the two models (CoE vs. H&S). Patient journey and workloads were mapped and quantified through interviews with hospital stakeholders. Cost data were collected through the hospital’s IT system; the sample comprised 2,277 HCV patients, over one year.RESULTS: The study calculated the average cost to treat HCV patients (~ € 1,470 per patient). Key cost drivers are lab tests (60%) and specialist visits (30%). Over one year, H&S can treat 68% more patients than CoE. As deferred patients absorb up to 40% of total costs, the “Optimized” model was designed by streamlining specialists’ visits and involving general practitioners during follow-up. “Optimized” model increases treatment capacity and reduces costs of deferred patients by 72% vs CoE.CONCLUSION: The study demonstrates the importance of organizational models in efficiently achieving 2030 elimination

    The alliance between genetic biobanks and patient organisations: the experience of the telethon network of genetic biobanks

    Get PDF
    Background: Rare diseases (RDs) are often neglected because they affect a small percentage of the population (6-8 %), which makes research and development of new therapies challenging processes. Easy access to high-quality samples and associated clinical data is therefore a key prerequisite for biomedical research. In this context, Genetic Biobanks are critical to developing basic, translational and clinical research on RDs. The Telethon Network of Genetic Biobanks (TNGB) is aware of the importance of biobanking as a service for patients and has started a dialogue with RD-Patient Organisations via promotion of dedicated meetings and round-tables, as well as by including their representatives on the TNGB Advisory Board. This has enabled the active involvement of POs in drafting biobank policies and procedures, including those concerning ethical issues. Here, we report on our experience with RD-Patient Organisations who have requested the services of existing biobanks belonging to TNGB and describe how these relationships were established, formalised and maintained. Results: The process of patient engagement has proven to be successful both for lay members, who increased their understanding of the complex processes of biobanking, and for professionals, who gained awareness of the needs and expectations of the people involved. This collaboration has resulted in a real interest on the part of Patient Organisations in the biobanking service, which has led to 13 written agreements designed to formalise this process. These agreements enabled the centralisation of rare genetic disease biospecimens and their related data, thus making them available to the scientific community. Conclusions: The TNGB experience has proven to be an example of good practice with regard to patient engagement in biobanking and may serve as a model of collaboration between disease-oriented Biobanks and Patient Organisations. Such collaboration serves to enhance awareness and trust and to encourage the scientific community to address research on RDs

    Lactiplantibacillus plantarum monolayer enhanced bactericidal action of carvacrol: biofilm inhibition of viable foodborne pathogens and spoilage microorganisms

    Get PDF
    The prevalence of biofilm-associated microorganisms and the increasing use of ready-to-eat fresh products represent the current duality the food industry must address. Innovative and eco-friendly antibiofilm solutions and appropriate microbiological food control systems are urgently needed to improve food quality and safety. This study aimed to investigate the in vitro combined efficacy of carvacrol with a pre-formed biofilm monolayer of the probiotic Lactiplantibacillus plantarum DSM 20174. The antimicrobial activity of carvacrol against both planktonic and sessile cells of foodborne pathogens and spoilage microorganisms, alone or in the presence of the pre-formed biofilm of L. plantarum, was investigated by culture-based methods along with flow cytometry (FCM) to monitor cells' cultivability and viability. The synergistic action of carvacrol and the pre-formed biofilm of L. plantarum was evaluated in the 96-well plates. The results showed that L. plantarum pre-formed biofilm monolayer enhanced the antimicrobial effect of carvacrol determining a bactericidal action while the treatment alone induced the viable but not culturable (VBNC) cell state only. Furthermore, the great efficacy of the combined treatment allowed the application of a lower concentration of carvacrol (100 ppm) to achieve significant damage in cell viability. In conclusion, the incorporation of carvacrol into the L. plantarum pre-formed biofilm represents a promising alternative for an antimicrobial functionalized ready-to-eat packaging

    Glycolysis Inhibition of Autophagy Drives Malignancy in Ovarian Cancer: Exacerbation by IL-6 and Attenuation by Resveratrol.

    Full text link
    peer reviewedCancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis

    Variants in ATP5F1B are associated with dominantly inherited dystonia

    Get PDF
    Nasca et al. identify a new candidate gene for dystonia, ATP5F1B, encoding a subunit of the mitochondrial ATP synthase (complex V). Likely pathogenic variants in ATP5F1B were associated with early-onset isolated dystonia in two independent families, both with an autosomal dominant mode of inheritance and incomplete penetrance. ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C;p.Thr334Pro and c.1445T>C;p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism

    Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile

    Get PDF
    Background: Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. Results: We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. Conclusions: We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches

    Telethon Network of Genetic Biobanks: a key service for diagnosis and research on rare diseases

    Get PDF
    Several examples have always illustrated how access to large numbers of biospecimens and associated data plays a pivotal role in the identification of disease genes and the development of pharmaceuticals. Hence, allowing researchers to access to significant numbers of quality samples and data, genetic biobanks are a powerful tool in basic, translational and clinical research into rare diseases. Recently demand for well-annotated and properly-preserved specimens is growing at a high rate, and is expected to grow for years to come. The best effective solution to this issue is to enhance the potentialities of well-managed biobanks by building a network.Here we report a 5-year experience of the Telethon Network of Genetic Biobanks (TNGB), a non-profit association of Italian repositories created in 2008 to form a virtually unique catalogue of biospecimens and associated data, which presently lists more than 750 rare genetic defects. The process of TNGB harmonisation has been mainly achieved through the adoption of a unique, centrally coordinated, IT infrastructure, which has enabled (i) standardisation of all the TNGB procedures and activities; (ii) creation of an updated TNGB online catalogue, based on minimal data set and controlled terminologies; (iii) sample access policy managed via a shared request control panel at web portal. TNGB has been engaged in disseminating information on its services into both scientific/biomedical - national and international - contexts, as well as associations of patients and families. Indeed, during the last 5-years national and international scientists extensively used the TNGB with different purposes resulting in more than 250 scientific publications. In addition, since its inception the TNGB is an associated member of the Biobanking and Biomolecular Resources Research Infrastructure and recently joined the EuroBioBank network. Moreover, the involvement of patients and families, leading to the formalization of various agreements between TNGB and Patients' Associations, has demonstrated how promoting Biobank services can be instrumental in gaining a critical mass of samples essential for research, as well as, raising awareness, trust and interest of the general public in Biobanks. This article focuses on some fundamental aspects of networking and demonstrates how the translational research benefits from a sustained infrastructure
    • …
    corecore