52 research outputs found

    Fully human IgG and IgM antibodies directed against the carcinoembryonic antigen (CEA) Gold 4 epitope and designed for radioimmunotherapy (RIT) of colorectal cancers

    Get PDF
    BACKGROUND: Human monoclonal antibodies (MAbs) are needed for colon cancer radioimmunotherapy (RIT) to allow for repeated injections. Carcinoembryonic antigen (CEA) being the reference antigen for immunotargeting of these tumors, we developed human anti-CEA MAbs. METHODS: XenoMouse(®)-G2 animals were immunized with CEA. Among all the antibodies produced, two of them, VG-IgG2κ and VG-IgM, were selected for characterization in vitro in comparison with the human-mouse chimeric anti-CEA MAb X4 using flow cytometry, surface plasmon resonance, and binding to radiolabeled soluble CEA and in vivo in human colon carcinoma LS174T bearing nude mice. RESULTS: Flow cytometry analysis demonstrated binding of MAbs on CEA-expressing cells without any binding on NCA-expressing human granulocytes. In a competitive binding assay using five reference MAbs, directed against the five Gold CEA epitopes, VG-IgG2κ and VG-IgM were shown to be directed against the Gold 4 epitope. The affinities of purified VG-IgG2κ and VG-IgM were determined to be 0.19 ± 0.06 × 10(8 )M(-1 )and 1.30 ± 0.06 × 10(8 )M(-1), respectively, as compared with 0.61 ± 0.05 × 10(8 )M(-1 )for the reference MAb X4. In a soluble phase assay, the binding capacities of VG-IgG2κ and VG-IgM to soluble CEA were clearly lower than that of the control chimeric MAb X4. A human MAb concentration of about 10(-7 )M was needed to precipitate approximatively 1 ng (125)I-rhCEA as compared with 10(-9 )M for MAb X4, suggesting a preferential binding of the human MAbs to solid phase CEA. In vivo, 24 h post-injection, (125)I-VG-IgG2κ demonstrated a high tumor uptake (25.4 ± 7.3%ID/g), close to that of (131)I-X4 (21.7 ± 7.2%ID/g). At 72 h post-injection, (125)I-VG-IgG2κ was still concentrated in the tumor (28.4 ± 11.0%ID/g) whereas the tumor concentration of (131)I-X4 was significantly reduced (12.5 ± 4.8%ID/g). At no time after injection was there any accumulation of the radiolabeled MAbs in normal tissues. A pertinent analysis of VG-IgM biodistribution was not possible in this mouse model in which IgM displays a very short half-life due to poly-Ig receptor expression in the liver. CONCLUSION: Our human anti-CEA IgG2κ is a promising candidate for radioimmunotherapy in intact form, as F(ab')(2 )fragments, or as a bispecific antibody

    Design and selection of optimal ErbB-targeting bispecific antibodies in pancreatic cancer

    Get PDF
    The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer

    Cyclization of peptides through a urea bond: application to the Arg-Gly-Asp tripeptide.

    No full text
    International audienceVarious synthetic cyclopeptides bind different cellular proteins with high affinity and specificity. In this study, we designed a new series of cyclic tetrapeptides containing the RGD sequence, a ligand for the alpha(v)beta(3) integrin receptor, in which the ring closure was performed through a urea bond between the alpha-amino group of the peptide and either the alpha- or the epsilon-amino group of an additional lysine. Interestingly, we showed that the urea-closed peptide had a higher affinity for alpha(v)beta(3) receptors than a reference pentacyclopeptide. Moreover, the synthetic strategy allows coupling of the resulting cyclic tetrapeptide through the carboxylic acid moiety of its lysine residue to fluorescent molecules or drugs. In addition, this strategy could be easily adapted for the cyclization of any other peptides

    MANUFACTURE OF SOLAR CELLS WITH 21 % EFFICIENCY

    No full text
    ABSTRACT: This paper reports recent progress by SunPower Corporation to commercialize silicon solar cells with efficiency greater than 20%. Large-area (149cm2) cells with efficiency as high as 21.5 % (confirmed by NREL) have been made on a 1 MW/yr pilot line, and a production line with 25 MW/yr capacity has been constructed. Using a back-contact cell design and novel manufacturing techniques, cells with efficiency over 21 % were produced with techniques suitable for high-volume manufacturing using Photovoltaic-grade Float Zone (PVFZ) silicon. Modules have been built. All test sequences for IEEE 1262 qualification have been passed and a 5kW demonstration array has been installed. Advantages of the cell design include a grid-less front surface and n-type starting material that does not suffer the initial light-induced degradation of commonly-used p-type wafers. Additional technical information about cell design and experiment results is also provided

    SGM-101: An innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery

    Get PDF
    International audiencePURPOSE:Fluorescence-guided surgery (FGS) provides surgeons with new opportunities to improve real-time cancer nodule detection and tumor margin visualization. Currently, the most important challenge in this field is the development of fluorescent dyes that specifically target tumors. We developed, characterized and evaluated SGM-101, an innovative antibody-dye conjugate in which the fluorochrome BM104, which has an absorbance band centered at 700 nm, is coupled to a chimeric monoclonal antibody (mAb) against carcinoembryonic antigen (CEA).METHODS:The dye to mAb ratio, binding to CEA and photobleaching of SGM-101 were determined. FGS was performed and results analyzed using different mouse models of human digestive tumors.RESULTS:SGM-101 allowed the detection of tumor nodules in three different colon cancer models: LS174T human colorectal adenocarcinoma cell-induced peritoneal carcinomatosis (PC) and liver metastases, and orthotopic grafts of HT29 human colorectal adenocarcinoma cells. In the PC model, submillimeter-sized nodules were detected during SGM-101-based FGS and SGM-101 predictive positive values ranged from 99.04% to 90.24% for tumor nodules >10 mg and nodules <1 mg, respectively. Similarly, in the orthotopic model of pancreatic cancer using BxPC3 (pancreas adenocarcinoma) cells, SGM-101 could clearly delineate tumors in vivo with a tumor-to-background ratio of 3.5, and penetrated in tumor nodules, as demonstrated by histological analysis. Free BM105 dye (BM104 with an activated ester for conjugation to the antibody) and an irrelevant conjugate did not induce any NIR fluorescence.CONCLUSION:These preclinical data indicate that SGM-101 is an attractive candidate for FGS of CEA-expressing tumors and is currently assessed in clinical trials

    : Radioimmunotherapy with 125I-mAbs

    No full text
    International audienceWe have previously shown that, in vitro, monoclonal antibodies (mAbs) labeled with the Auger electron emitter (125)I are more cytotoxic if they remain at the cell surface and do not internalize in the cytoplasm. Here, we assessed the in vivo biologic efficiency of internalizing and noninternalizing (125)I-labeled mAbs for the treatment of small solid tumors. METHODS: Swiss nude mice bearing intraperitoneal tumor cell xenografts were injected with 37 MBq (370 MBq/mg) of internalizing (anti-HER1) (125)I-m225 or noninternalizing (anti-CEA) (125)I-35A7 mAbs at days 4 and 7 after tumor cell grafting. Nonspecific toxicity was assessed using the irrelevant (125)I-PX mAb, and untreated controls were injected with NaCl. Tumor growth was followed by bioluminescence imaging. Mice were sacrificed when the bioluminescence signal reached 4.5 x 10(7) photons/s. Biodistribution analysis was performed to determine the activity contained in healthy organs and tumor nodules, and total cumulative decays were calculated. These values were used to calculate the irradiation dose by the MIRD formalism. RESULTS: Median survival (MS) was 19 d in the NaCl-treated group. Similar values were obtained in mice treated with unlabeled PX (MS, 24 d) and 35A7 (MS, 24 d) or with (125)I-PX mAbs (MS, 17 d). Conversely, mice treated with unlabeled or labeled internalizing m225 mAb (MS, 76 and 77 d, respectively) and mice injected with (125)I-35A7 mAb (MS, 59 d) showed a significant increase in survival. Irradiation doses were comparable in all healthy organs, independently from the mAb used, whereas in tumors the irradiation dose was 7.4-fold higher with (125)I-labeled noninternalizing than with internalizing mAbs. This discrepancy might be due to iodotyrosine moiety release occurring during the catabolism of internalizing mAbs associated with high turnover rate. CONCLUSION: This study indicates that (125)I-labeled noninternalizing mAbs could be suitable for radioimmunotherapy of small solid tumors and that the use of internalizing mAbs should not be considered as a requirement for the success of treatments with (125)I Auger electrons

    Internalization of Foldamer-Based DNA Mimics through a Site-Specific Antibody Conjugate to Target HER2-Positive Cancer Cells

    No full text
    International audienceInhibition of protein–DNA interactions represents an attractive strategy to modulate essential cellular functions. We reported the synthesis of unique oligoamide-based foldamers that adopt single helical conformations and mimic the negatively charged phosphate moieties of B-DNA. These mimics alter the activity of DNA interacting enzymes used as targets for cancer treatment, such as DNA topoisomerase I, and they are cytotoxic only in the presence of a transfection agent. The aim of our study was to improve internalization and selective delivery of these highly charged molecules to cancer cells. For this purpose, we synthesized an antibody-drug conjugate (ADC) using a DNA mimic as a payload to specifically target cancer cells overexpressing HER2. We report the bioconjugation of a 16-mer DNA mimic with trastuzumab and its functional validation in breast and ovarian cancer cells expressing various levels of HER2. Binding of the ADC to HER2 increased with the expression of the receptor. The ADC was internalized into cells and was more efficient than trastuzumab at inhibiting their growth in vitro. These results provide proof of concept that it is possible to site-specifically graft high molecular weight payloads such as DNA mimics onto monoclonal antibodies to improve their selective internalization and delivery in cancer cells
    corecore