47,179 research outputs found

    Generation of entangled photons by trapped ions in microcavities under a magnetic field gradient

    Full text link
    We propose a potential scheme to generate entangled photons by manipulating trapped ions embedded in two-mode microcavities, respectively, assisted by a magnetic field gradient. By means of the spin-spin coupling due to the magnetic field gradient and the Coulomb repulsion between the ions, we show how to efficiently generate entangled photons by detecting the internal states of the trapped ions. We emphasize that our scheme is advantageous to create complete sets of entangled multi-photon states. The requirement and the experimental feasibility of our proposal are discussed in detail.Comment: 2 Tables, 2 Figures, To appear in Phys. Rev.

    A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties

    Full text link
    We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement results, Diana can infer the secret messages. If a perfect quantum channel is used, the secret messages are faithfully transmitted from Alice, Bob and Charlie to Diana via initially shared pairs of four-particle GHZ states without revealing any information to a potential eavesdropper. As there is no transmission of the qubits carrying the secret message in the public channel, it is completely secure for the direct secret communication. This scheme can be considered as a network of communication parties where each party wants to communicate secretly with a central party or server.Comment: 4 pages, no figur

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac

    Evidence for electromagnetic granularity in polycrystalline Sm1111 iron-pnictides with enhanced phase purity

    Full text link
    We prepared polycrystalline SmFeAsO1-xFx (Sm1111) bulk samples by sintering and hot isostatic pressing (HIP) in order to study the effects of phase purity and relative density on the intergranular current density. Sintered and HIPped Sm1111 samples are denser with fewer impurity phases, such as SmOF and the grain boundary wetting phase, FeAs. We found quite complex magnetization behavior due to variations of both the inter and intragranular current densities. Removing porosity and reducing second phase content enhanced the intergranular current density, but HIPping reduced Tc and the intragranular current density, due to loss of fluorine and reduction of Tc. We believe that the HIPped samples are amongst the purest polycrystalline 1111 samples yet made. However, their intergranular current densities are still small, providing further evidence that polycrystalline pnictides, like polycrystalline cuprates, are intrinsically granular.Comment: 14 pages, 6 figure

    Numerical Modelling of the MIT/NREL TLP Wind Turbine and Comparison with the Experimental Results

    Get PDF
    In this study, numerical analysis of a tension leg platform wind turbine is conducted and the responses with focus on surge motions and tendon tension are compared with available experimental test data. The main scope of the study is to establish the numerical model for which the damping coefficients for rigid-body motions are tuned based on the comparison of the sway free decay test results (natural periods and damping ratios) between the numerical and the experimental studies. The differences between the test model properties and the numerical model information have been discussed. Numerical model tuning with available test data resulted with relatively good accordance but also slight to moderate differences in the responses. These differences are credited for the uncertainties in the model testing and the solution methodology of the numerical model. Numerical study is under development with regular and irregular wave analyses and analyses including wind excitation

    Neutron Irradiation of Sm-1111

    Full text link
    SmFeAsO1x_{1-x}Fx_x was irradiated in a fission reactor to a fast (E > 0.1 MeV) neutron fluence of 4x10^21{21} m2^{-2}. The introduced defects increase the normal state resistivity due to a reduction in the mean free path of the charge carriers. This leads to an enhancement of the upper critical field at low temperatures. The critical current density within the grains, Jc, increases upon irradiation. The second maximum in the field dependence of Jc disappears and the critical current density becomes a monotonically decreasing function of the applied magnetic field

    Evidence for s-wave pairing from measurement on lower critical field in MgCNi3MgCNi_3

    Full text link
    Magnetization measurements in the low field region have been carefully performed on a well-shaped cylindrical and an ellipsoidal sample of superconductor MgCNi3MgCNi_3. Data from both samples show almost the same results. The lower critical field Hc1H_{c1} and the London penetration depth λ\lambda are thus derived. It is found that the result of normalized superfluid density λ2(0)/λ2(T)\lambda^2(0)/\lambda^2(T) of MgCNi3MgCNi_3 can be well described by BCS prediction with the expectation for an isotropic s-wave superconductivity.Comment: To appear in Phys. Rev.

    Anomalous behavior of trapping on a fractal scale-free network

    Full text link
    It is known that the heterogeneity of scale-free networks helps enhancing the efficiency of trapping processes performed on them. In this paper, we show that transport efficiency is much lower in a fractal scale-free network than in non-fractal networks. To this end, we examine a simple random walk with a fixed trap at a given position on a fractal scale-free network. We calculate analytically the mean first-passage time (MFPT) as a measure of the efficiency for the trapping process, and obtain a closed-form expression for MFPT, which agrees with direct numerical calculations. We find that, in the limit of a large network order VV, the MFPT behaves superlinearly as V3/2 \sim V^{{3/2}} with an exponent 3/2 much larger than 1, which is in sharp contrast to the scaling Vθ \sim V^{\theta} with θ1\theta \leq 1, previously obtained for non-fractal scale-free networks. Our results indicate that the degree distribution of scale-free networks is not sufficient to characterize trapping processes taking place on them. Since various real-world networks are simultaneously scale-free and fractal, our results may shed light on the understanding of trapping processes running on real-life systems.Comment: 6 pages, 5 figures; Definitive version accepted for publication in EPL (Europhysics Letters

    Wireless Powered Cognitive Radio Networks With Compressive Sensing and Matrix Completion

    Get PDF
    In this paper, we consider cognitive radio networks in which energy constrained secondary users (SUs) can harvest energy from the randomly deployed power beacons. A new frame structure is proposed for the considered networks. In the considered network, a wireless power transfer model is proposed, and the closed-form expressions for the power outage probability are derived. In addition, in order to reduce the energy consumption at SUs, sub-Nyquist sampling are performed at SUs. Subsequently, compressive sensing and matrix completion techniques are invoked to recover the original signals at the fusion center by utilizing the sparsity property of spectral signals. Throughput optimizations of the secondary networks are formulated into two linear constrained problems, which aim to maximize the throughput of a single SU and the whole cooperative network, respectively. Three methods are provided to obtain the maximal throughput of secondary networks by optimizing the time slots allocation and the transmit power. Simulation results show that the maximum throughput can be improved by implementing compressive spectrum sensing in the proposed frame structure design

    Real-time marker-less multi-person 3D pose estimation in RGB-Depth camera networks

    Get PDF
    This paper proposes a novel system to estimate and track the 3D poses of multiple persons in calibrated RGB-Depth camera networks. The multi-view 3D pose of each person is computed by a central node which receives the single-view outcomes from each camera of the network. Each single-view outcome is computed by using a CNN for 2D pose estimation and extending the resulting skeletons to 3D by means of the sensor depth. The proposed system is marker-less, multi-person, independent of background and does not make any assumption on people appearance and initial pose. The system provides real-time outcomes, thus being perfectly suited for applications requiring user interaction. Experimental results show the effectiveness of this work with respect to a baseline multi-view approach in different scenarios. To foster research and applications based on this work, we released the source code in OpenPTrack, an open source project for RGB-D people tracking.Comment: Submitted to the 2018 IEEE International Conference on Robotics and Automatio
    corecore