243 research outputs found

    Microvessel Density and Clinicopathologic Characteristics in Hepatocellular Carcinoma With and Without Cirrhosis

    Get PDF
    Angiogenesis is essential to the survival, growth, invasion, and metastasis of various human solid tumors. We compared the microvessel density (MVD) and clinicopathologic features of two different groups of hepatocellular carcinoma (HCC), namely HCC with cirrhosis (HCC-C) and without cirrhosis (HCC-NC). A tissue microarray composed of 20 normal livers, 20 cirrhotic livers, tumor and adjacent background non-neoplastic liver tissues from 20 HCC-C and 20 HCC-NC were constructed and stained immunohistochemically with antibodies against the antigen CD34. The MVD was determined by the measurement of the area and density of CD34 positive sinusoidal endothelial cells using the Image Pro Plus software. There was a trend of increased MVD in cirrhotic liver compared to normal liver and in cirrhotic background non-neoplastic liver adjacent to the tumor compared to the non-cirrhotic background non-neoplastic liver. Tumor tissue of HCC-C and HCC-NC both showed significantly higher MVD than their adjacent background non-neoplastic liver tissue. There was no statistical difference in MVD between HCC-C and HCC-NC. A higher value of MVD was seen in tumors of intermediate size (5–10 cm), high histologic grade, the presence of lymphvascular space invasion, and the underlying etiology of hepatitis C and alcoholic steatohepatitis. This data indicates that MVD may play an important role in liver carcinogenesis and neoplastic progression. The difference in clinical behavior between HCC-C and HCC-NC does not seem to be associated with differences in tumor MVD. Objective measurement of MVD using standardized computer software could potentially be used as a clinical marker to predict patients’ prognosis

    Physical properties and chemical composition of the cores in the California molecular cloud

    Full text link
    We aim to reveal the physical properties and chemical composition of the cores in the California molecular cloud (CMC), so as to better understand the initial conditions of star formation. We made a high-resolution column density map (18.2") with Herschel data, and extracted a complete sample of the cores in the CMC with the \textsl{fellwalker} algorithm. We performed new single-pointing observations of molecular lines near 90 GHz with the IRAM 30m telescope along the main filament of the CMC. In addition, we also performed a numerical modeling of chemical evolution for the cores under the physical conditions. We extracted 300 cores, of which 33 are protostellar and 267 are starless cores. About 51\% (137 of 267) of the starless cores are prestellar cores. Three cores have the potential to evolve into high-mass stars. The prestellar core mass function (CMF) can be well fit by a log-normal form. The high-mass end of the prestellar CMF shows a power-law form with an index α=0.9±0.1\alpha=-0.9\pm 0.1 that is shallower than that of the Galactic field stellar mass function. Combining the mass transformation efficiency (ε\varepsilon) from the prestellar core to the star of 15±1%15\pm 1\% and the core formation efficiency (CFE) of 5.5\%, we suggest an overall star formation efficiency of about 1\% in the CMC. In the single-pointing observations with the IRAM 30m telescope, we find that 6 cores show blue-skewed profile, while 4 cores show red-skewed profile. [HCO+\rm {HCO}^{+}]/[HNC] and [HCO+\rm {HCO}^{+}]/[N2H+]\rm [N_{2}H^{+}] in protostellar cores are higher than those in prestellar cores; this can be used as chemical clocks. The best-fit chemical age of the cores with line observations is 5×104\sim 5\times 10^4~years.Comment: Accepted by Astronomy & Astrophysics (A&A

    Expression Signature and Role of miR-30d-5p in Non-Small Cell Lung Cancer: a Comprehensive Study Based on in Silico Analysis of Public Databases and in Vitro Experiments

    Get PDF
    Background/Aims: The purpose of this study was to probe the clinico-pathological significance and the underlying mechanism of miR-30d-5p expression in non-small cell lung cancer (NSCLC). Methods: We initially examined the level of miR-30d-5p expression in NSCLC and non-cancer tissues using RT-qPCR. Then, a series of validation analyses including a meta-analysis of data from microarray chips in Gene Expression Omnibus (GEO), data mining of the cancer genome atlas (TCGA) and an integrated meta-analysis incorporating GEO microarray chips, TCGA data, in-house RT-qPCR and literature studies were performed to examine the clinico-pathological value of miR-30d-5p expression in NSCLC. In vitro experiments were further conducted to investigate the impact of miR-30d-5p on NSCLC cell growth. The molecular mechanism by which miR-30d-5p regulates the pathogenesis of NSCLC was probed through a bioinformatics analysis of its target genes. Moreover, dual luciferase reporter assay was conducted to verify the targeting regulatory relationship between miR-30d-5p and CCNE2. Results: Based on results from RT-qPCR, GEO meta-analysis, TCGA data mining and the integrated meta-analysis incorporating GEO microarray chips, TCGA data, in-house RT-qPCR and literature studies, miR-30d-5p expression was decreased in NSCLC tissues, and patients with NSCLC who presented with lower miR-30d-5p expression tended to display an advanced clinical progression. Significant pathways including the Mucin type O-glycan biosynthesis pathway, cell cycle pathway and cysteine and methionine metabolism pathway (all P< 0.05) revealed potential roles of the target genes of miR-30d-5p in the oncogenesis of NSCLC. Results from in vitro experiments indicated that miR-30d-5p could attenuate proliferation and viability of NSCLC cells. Among the 12 identified hub genes, nine genes including E2F3, CCNE2, SKP2, CDK6, TFDP1, LDHA, GOT2, DNMT3B and ST6GALNAC1 were validated by Pearson’s correlation test and the human protein atlas (HPA) database as targets of miR-30d-5p with higher probability. Specifically, dual luciferase reporter assay confirmed that CCNE2 was directly targeted by miR-30d-5p. Conclusion: In summary, miR-30d-5p expression is decreased in NSCLC, and it might play the role as tumor suppressor in NSCLC by regulating target genes

    Risk of Pneumonitis and Pneumonia Associated With Immune Checkpoint Inhibitors for Solid Tumors: A Systematic Review and Meta-Analysis

    Get PDF
    Background: We performed a systematic review and meta-analysis to evaluate the risk of pneumonitis and pneumonia associated with immune checkpoint inhibitors (ICIs) for solid tumors.Methods: The following keywords were used in searching the Embase and PubMed database: pneumonitis, pneumonia, and immune checkpoint inhibitors. The data was analyzed by using the R software and Metafor package.Results: Among 3,436 studies, 23 randomized clinical trials (RCTs) met our selection criteria which included data from 12,876 patients. Compared with chemotherapy, PD-1 inhibitors showed significant increase in grade 1-5 and grade 3-5 pneumonitis (RR, 5.17, 95% CI: 2.82–9.47, p < 0.001; RR, 4.14, 95% CI: 1.82–9.42, p < 0.001), but not in pneumonia. PD-L1 inhibitors showed significant increase in grade 1-5 pneumonitis and pneumonia (RR, 3.25, 95% CI: 1.61–6.57, p < 0.001; RR, 2.11, 95% CI: 1.20–3.70, p < 0.001). There was no significant difference in any grade pneumonitis and pneumonia in cytotoxic T lymphocyte-associated protein 4 (CTLA4) inhibitors subgroup. Programmed cell death protein 1 (PD-1) inhibitor (nivolumab and pembrolizumab) both showed significant increase in grade 1-5 pneumonitis, and pembrolizumab specially tended to increase grade 3-5 pneumonitis. (RR, 5.64 95% CI: 1.94–16.38, p < 0.001). Compared with PD-1 inhibitor (nivolumab) or CTLA-4 inhibitor (ipilimumab) monotherapy, PD-1 inhibitor, and CTLA-4 inhibitor (nivolumab plus ipilimumab) combination therapies showed significant increase in grade 1-5 and grade 3-5 pneumonitis (RR 3.47, 95%CI:1.76–6.83, p < 0.001; RR 3.48, 95%CI: 1.10–11.02, p < 0.001).Conclusions: PD-1/PD-L1 inhibitors treatment could increase the risk of all-grade pneumonitis. CTLA4 inhibitor ipilimumab treatment alone could not increase the risk of pneumonitis but could augment the risk of pneumonitis in PD-1/PD-L1 inhibitor treated patients. There was no significant increase in the risk of pneumonia after either PD-1/PDL-1inhibitor or CTLA4 inhibitor treatment alone or in combination

    Genetic analysis of walnut cultivars from southwest China:Implications for germplasm improvement

    Get PDF
    Walnuts are highly valued for their rich nutritional profile and wide medicinal applications. This demand has led to the intensification of breeding activities in major walnut production areas such as southwest China, in order to develop more superior cultivars. With the increasing number of cultivars, accurate identification becomes fundamental to selecting the right cultivar for grafting, industrial processing or development of new cultivars. To ensure proper identification of cultivars and understand the genetic structure of wild and cultivated material, we genotyped 362 cultivated and wild individuals of walnut trees from southwest China (with two additional populations from Xinjiang, plus three cultivars from Canada, France and Belgium) using 36 polymorphic microsatellite loci. We found relatively low indices of genetic diversity (H(O) = 0.570, H(E) = 0.404, N(A) = 2.345) as well as a high level of clonality (>85% of cultivars), indicating reliance on genetically narrow sources of parental material for breeding. Our STRUCTURE and PCoA analyses generally delineated the two species, though considerable levels of introgression were also evident. More significantly, we detected a distinct genetic group of cultivated Juglanssigillata, which mainly comprised individuals of the popular ‘Yangbidapao’ landrace. Finally, a core set of 18 SSR loci was selected, which was capable of identifying 32 cultivars. In a nutshell, our results call for more utilization of genetically disparate material, including wild walnut trees, as parental sources to breed for more cultivars. The data reported herein will significantly contribute towards the genetic improvement and conservation of the walnut germplasm in southwest China

    International consensus guidelines for scoring the histopathological growth patterns of liver metastasis

    Get PDF
    BACKGROUND: Liver metastases present with distinct histopathological growth patterns (HGPs), including the desmoplastic, pushing and replacement HGPs and two rarer HGPs. The HGPs are defined owing to the distinct interface between the cancer cells and the adjacent normal liver parenchyma that is present in each pattern and can be scored from standard haematoxylin-and-eosin-stained (H&E) tissue sections. The current study provides consensus guidelines for scoring these HGPs. METHODS: Guidelines for defining the HGPs were established by a large international team. To assess the validity of these guidelines, 12 independent observers scored a set of 159 liver metastases and interobserver variability was measured. In an independent cohort of 374 patients with colorectal liver metastases (CRCLM), the impact of HGPs on overall survival after hepatectomy was determined. RESULTS: Good-to-excellent correlations (intraclass correlation coefficient >0.5) with the gold standard were obtained for the assessment of the replacement HGP and desmoplastic HGP. Overall survival was significantly superior in the desmoplastic HGP subgroup compared with the replacement or pushing HGP subgroup (P=0.006). CONCLUSIONS: The current guidelines allow for reproducible determination of liver metastasis HGPs. As HGPs impact overall survival after surgery for CRCLM, they may serve as a novel biomarker for individualised therapies
    corecore