119 research outputs found

    Electron correlation and Fermi surface topology of Nax_xCoO2_2

    Full text link
    The electronic structure of Nax_xCoO2_2 revealed by recent photoemission experiments shows important deviations from band theory predictions. The six small Fermi surface pockets predicted by LDA calculations have not been observed as the associated eg′e_g^\prime band fails to cross the Fermi level for a wide range of sodium doping concentration xx. In addition, significant bandwidth renormalizations of the t2gt_{2g} complex have been observed. We show that these discrepancies are due to strong electronic correlations by studying the multi-orbital Hubbard model in the Hartree-Fock and strong-coupling Gutzwiller approximation. The quasiparticle dispersion and the Fermi surface topology obtained in the presence of strong local Coulomb repulsion are in good agreement with experiments.Comment: 5 pages, 4 figures, revtex4; minor changes, to be published in Phys. Rev. Let

    Multi-Resource Allocation for On-Device Distributed Federated Learning Systems

    Full text link
    This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system. Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively, to minimize the objective of system subject to the computation/communication budget and a target latency requirement. In particular, mobile devices are connect via wireless TCP/IP architectures. Exploiting the optimization problem structure, the problem can be decomposed to two convex sub-problems. Drawing on the Lagrangian dual and harmony search techniques, we characterize the global optimal solution by the closed-form solutions to all sub-problems, which give qualitative insights to multi-resource tradeoff. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm

    Atomic-Scale Strain Manipulation of a Charge Density Wave

    Get PDF
    A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wave vector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer new CDWs in 2H-NbSe2. Our STM/S measurements combined with theory reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wave vector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer novel electronic states in any material where local strain or lattice symmetry breaking plays a role.Comment: to appear in PNAS (2018

    Comparison of the Effects of Acarbose and TZQ-F, a New Kind of Traditional Chinese Medicine to Treat Diabetes, Chinese Healthy Volunteers

    Get PDF
    Ethnopharmacological Relevance. TZQ-F has been traditionally used in Traditional Chinese Medicine as a formula for the treatment of diabetes. Aim of the Study. This study aims to compare the pharmacologic effects and gastrointestinal adverse events between TZQ-F and acarbose. Methods. The double-blind randomized placebo-controlled fivefold crossover study was performed in 20 healthy male volunteers. Plasma glucose, plasma IRI, and plasma C-peptide were measured to assess the pharmacologic effects. Flatus and bowel activity were measured to assess the adverse event of gastrointestinal effect. Results. 3 and 4 tablets of TZQ decreased the Cmax of plasma glucose compared with that of the previous day and with placebo. 3 tablets also decreased Cmax of plasma C-peptide compared with placebo. 4 tablets increased Cmax of plasma insulin after breakfast and the AUC of plasma C-peptide after breakfast and dinner. 2 tablets did not decrease plasma glucose and elevated the Cmax and AUC of C-peptide after breakfast and dinner, respectively. Acarbose 50 mg decreased the Cmax of plasma insulin and C-peptide after breakfast and the Cmax of plasma glucose and C-peptide after dinner. The subjects who received TZQ did not report any abdominal adverse events. Conclusions. 3 tablets of TZQ have the same effects as the acarbose

    Baseline model based structural health monitoring method under varying environment

    Get PDF
    Environment has significant impacts on the structure performance and will change features of sensor measurements on the monitored structure. The effect of varying environment needs to be considered and eliminated while conducting structural health monitoring. In order to achieve this purpose, a baseline model based structural health monitoring method is proposed in this paper. The relationship between signal features and varying environment, known as a baseline model, is first established. Then, a tolerance range of the signal feature is evaluated via a data based statistical analysis. Furthermore, the health indicator, which is defined as the proportion of signal features within the tolerance range, is used to judge whether the structural system is in normal working condition or not so as to implement the structural health monitoring. Finally, experimental data analysis for an operating wind turbine is conducted and the results demonstrate the performance of the proposed new technique

    The multidrug-resistant Pseudomonas fluorescens strain: a hidden threat in boar semen preservation

    Get PDF
    Although the bacterial composition of boar ejaculate has been extensively studied, the bacterial composition of extended boar semen is often overlooked, despite the potential risks these microorganisms may pose to the long-term preservation of extended boar semen at 15–17°C. In this study, we characterized the bacterial community composition of extended semen and discovered that Pseudomonas spp. was the dominant flora. The dominant strains were further isolated and identified as a potential new species in the Pseudomonas fluorescens group and named GXZC strain, which had adverse effects on sperm quality and was better adapted to growth at 17°C. Antimicrobial susceptibility testing showed that the GXZC strain was resistant to all commonly used veterinary antibiotics. Whole-genome sequencing (WGS) and genome annotation revealed the large genetic structure and function [7,253,751 base pairs and 6,790 coding sequences (CDSs)]. Comparative genomic analysis with the closest type strains showed that the GXZC strain predicted more diversity of intrinsic and acquired resistance genes to multi-antimicrobial agents. Taken together, our study highlights a problem associated with the long-term storage of extended boar semen caused by a P. fluorescens group strain with unique biological characteristics. It is essential to develop a new antibacterial solution for the long-term preservation of boar semen

    Superconductivity and orbital-selective nematic order in a new titanium-based kagome metal CsTi3Bi5

    Full text link
    Fabrication of new types of superconductors with novel physical properties has always been a major thread in the research of superconducting materials. An example is the enormous interests generated by the cascade of correlated topological quantum states in the newly discovered vanadium-based kagome superconductors AV3Sb5 (A=K, Rb, and Cs) with a Z2 topological band structure. Here we report the successful fabrication of single-crystals of titanium-based kagome metal CsTi3Bi5 and the observation of superconductivity and electronic nematicity. The onset of the superconducting transition temperature Tc is around 4.8 K. In sharp contrast to the charge density wave superconductor AV3Sb5, we find that the kagome superconductor CsTi3Bi5 preserves translation symmetry, but breaks rotational symmetry and exhibits an electronic nematicity. The angular-dependent magnetoresistivity shows a remarkable two-fold rotational symmetry as the magnetic field rotates in the kagome plane. The scanning tunneling microscopy and spectroscopic imaging detect rotational-symmetry breaking C2 quasiparticle interference patterns (QPI) at low energies, providing further microscopic evidence for electronic nematicity. Combined with first-principle calculations, we find that the nematic QPI is orbital-selective and dominated by the Ti dxz and dyz orbitals, possibly originating from the intriguing orbital bond nematic order. Our findings in the new "135" material CsTi3Bi5 provide new directions for exploring the multi-orbital correlation effect and the role of orbital or bond order in the electron liquid crystal phases evidenced by the symmetry breaking states in kagome superconductors
    • …
    corecore