7 research outputs found

    Bidirectional Functional Effects of <i>Staphylococcus</i> on Carcinogenesis

    No full text
    As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1

    Association of ADAMTS-7 Levels with Cardiac Function in a Rat Model of Acute Myocardial Infarction

    No full text
    Background/Aims: High ADAMTS-7 levels are associated with acute myocardial infarction (AMI), although its involvement in ventricular remodeling is unclear. In this study, we investigated the association between ADAMTS-7 expression and cardiac function in a rat AMI model. Methods: Sprague-Dawley rats were randomized into AMI (n = 40) and sham (n = 20) groups. The left anterior descending artery was sutured to model AMI. Before surgery and 7, 14, 28, and 42 days post-surgery, ADAMTS-7 and brain natriuretic peptide (BNP), and cartilage oligomeric matrix protein (COMP) were assessed by ELISA, western blot, real-time RT-PCR, and/or immunohistochemistry. Cardiac functional and structural parameters were assessed by M-mode echocardiography. Results: After AMI, plasma ADAMTS-7 levels increased, peaking on day 28 (AMI: 13.2 ± 6.3 vs. sham: 3.4 ± 1.3 ng/ml, P P = 0.025), left ventricular end-diastolic diameter (r = 0.695, P = 0.041), left ventricular end-systolic diameter (r = 0.710, P = 0.039), left ventricular ejection fraction (r = 0.695, P = 0.036), and left ventricular short-axis fractional shortening (r = 0.721, P = 0.024). Conclusions: ADAMTS-7 levels may reflect the degree of ventricular remodeling after AMI

    Tuning the Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential

    No full text
    Developing selective and efficient catalysts is highly desirable for electrochemical CO2 reduction (ECR) to fuels and chemicals. Pd can strongly bind *COOH but weakly bind *CO, thus resulting in CO as a product. However, proton reduction also occurs severely on the surface of Pd, leading to low CO selectivity. Here we found that the ECR to CO can be greatly enhanced by controlling the Pd–ceria interface and doping with tellurium atoms. Notably, a very high mass activity of 92 mA mgPd−1 (at 1.0 V vs. reversible hydrogen electrode) for CO formation was achieved, significantly surpassing previously reported Pd catalysts (35 mA mgPd−1 at −1.0 V). The Pd catalysts comprising CeOx displayed more positive onset potentials than the Pd catalysts in the absence of CeOx, enabling ECR to CO at −0.6 V (vs. RHE). The modified Pd catalyst also afforded an unprecedented CO faradaic efficiency of over 84% at a low Pd loading (<3 wt%). Density functional theory calculations revealed that the Pd atoms located between the Te dopant and CeO2 promoted CO formation, thus improving CO2 conversion efficiency
    corecore