205 research outputs found

    Study of High Efficiency Flow Regulation of VIGV in Centrifugal Compressor

    Get PDF
    Variable inlet guide vane (VIGV) is used to control the mass flow and generate prewhirl in centrifugal compressors. Due to the tip clearance of the guide vanes and the defect of the traditional guide vane profiles, the mass flow regulation of VIGV is limited, resulting in a large waste of compressed gas. Two kinds of inlet flow channels were proposed to eliminate the influence of tip clearance. These structures were numerically investigated at different setting angles. The results show that the improved channels not only expand the range of mass flow regulation, but also reduce the power and increase the efficiency of the compressor. Ten kinds of guide vane profiles, including different thickness distribution, camber line profile, were selected to compare with the original one and with each other. In the premise of ensuring the performance of compressor, the best guide vane profile was selected. The results show that reducing the guide vane thickness, increasing the guide vane camber angle, and increasing the distance between the maximum camber position and the leading edge of guide vane can help expand the range of mass flow regulation. The achievement of this research can effectively improve the flow regulation ability of VIGV and the performance of compressor

    Study of PBLH and Its Correlation with Particulate Matter from One-Year Observation over Nanjing, Southeast China

    Full text link
    The Planetary Boundary Layer Height (PBLH) plays an important role in the formation and development of air pollution events. Particulate Matter is one of major pollutants in China. Here, we present the characteristics of PBLH through three-methods of Lidar data inversion and show the correlation between the PBLH and the PM2.5 (PM2.5 with the diameter 75 μg/m3 and the PM2.5 \u3c 35 μg/m3 in daytime, respectively. The low PBLH often occurs with condition of the low wind speed and high relative humidity, which will lead to high PM2.5 concentration and the low visibility. On the other hand, the stability of PBL is enhanced by high PM concentration and low visibility

    Reconfigurable Fabry-Pérot Cavity Antenna Basing on Phase Controllable Metasurfaces

    Get PDF
    Fabry-Pérot cavity (FPC) antenna is a kind of high-gain antenna. Compared with other high-gain antennas, such as array antenna and reflector antenna, the FPC antenna enjoys the advantages of simple structure and high efficiency. So it has attracts many attention since proposed. However, it also suffers the disadvantages of narrow band and fixed radiation patterns, due to its resonance structure. In order to overcome these disadvantages, we proposed novel strategies to realize reconfigurable FPC antennas using the phase controllable metasurfaces (MSs). Through adding PIN diodes into every unit cell of the MS, the reflection phase of the MS can be controlled by tuning the states of the diodes. Then the designed phase controllable MSs are used as the partially reflection surfaces (PRS) to realize frequency or radiation pattern reconfigurable FPC antennas. In this chapter, we analyze the basic theory of the FPC antenna and describe its radiation principle firstly. Then, reflection phase controllable MSs are designed and applied to the FPC antennas. Thus frequency and radiation pattern reconfigurable FPC antennas are formed. The design processes are described in details, and the proposed antennas are fabricated and measured. The measured results verify the correctness of the designs. Through this chapter, the readers can form a comprehensive understanding of reconfigurable FPC antenna design

    Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites

    Get PDF
    5-Hydroxymethylcytosine (5hmC) arises from the oxidation of 5-methylcytosine (5mC) by Fe2+ and 2-oxoglutarate-dependent 10–11 translocation (TET) family proteins. Substantial levels of 5hmC accumulate in many mammalian tissues, especially in neurons and embryonic stem cells, suggesting a potential active role for 5hmC in epigenetic regulation beyond being simply an intermediate of active DNA demethylation. 5mC and 5hmC undergo dynamic changes during embryogenesis, neurogenesis, hematopoietic development, and oncogenesis. While methods have been developed to map 5hmC, more efficient approaches to detect 5hmC at base resolution are still highly desirable. Herein, we present a new method, Jump-seq, to capture and amplify 5hmC in genomic DNA. The principle of this method is to label 5hmC by the 6-N3-glucose moiety and connect a hairpin DNA oligonucleotide carrying an alkyne group to the azide-modified 5hmC via Huisgen cycloaddition (click) chemistry. Primer extension starts from the hairpin motif to the modified 5hmC site and then continues to “land” on genomic DNA. 5hmC sites are inferred from genomic DNA sequences immediately spanning the 5-prime junction. This technology was validated, and its utility in 5hmC identification was confirmed
    corecore