61 research outputs found

    Sphingosine Kinase 1 Mediation of Expression of the Anaphylatoxin Receptor C5L2 Dampens the Inflammatory Response to Endotoxin

    Get PDF
    The complement anaphylatoxin C5a has a pathogenetic role in endotoxin-induced lung inflammatory injury by regulating phagocytic cell migration and activation. Endotoxin and C5a activate the enzyme sphingosine kinase (Sphk) 1 to generate the signaling lipid sphingosine-1-phosphate (S1P), a critical regulator of phagocyte function. We assessed the function of Sphk1 and S1P in experimental lung inflammatory injury and determined their roles in anaphylatoxin receptor signaling and on the expression of the two C5a receptors, C5aR (CD88) and C5L2, on phagocytes. We report that Sphk1 gene deficient (Sphk1−/−) mice had augmented lung inflammatory response to endotoxin compared to wild type mice. Sphk1 was required for C5a-mediated reduction in cytokine and chemokine production by macrophages. Moreover, neutrophils from Sphk1−/− mice failed to upregulate the anaphylatoxin receptor C5L2 in response to LPS. Exogenous S1P restored C5L2 cell surface expression of Sphk1−/− mouse neutrophils to wild type levels but had no effect on cell surface expression of the other anaphylatoxin receptor, CD88. These results provide the first genetic evidence of the crucial role of Sphk1 in regulating the balance between expression of CD88 and C5L2 in phagocytes. S1P-mediated up-regulation of C5L2 is a novel therapeutic target for mitigating endotoxin-induced lung inflammatory injury

    Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells

    Get PDF
    SummaryUnderstanding epigenetic mechanisms regulating embryonic stem cell (ESC) differentiation to endothelial cells may lead to increased efficiency of generation of vessel wall endothelial cells needed for vascular engineering. Here we demonstrated that the histone demethylases KDM4A and KDM4C played an indispensable but independent role in mediating the expression of fetal liver kinase (Flk)1 and VE-cadherin, respectively, and thereby the transition of mouse ESCs (mESCs) to endothelial cells. KDM4A was shown to bind to histones associated with the Flk1 promoter and KDM4C to bind to histones associated with the VE-cadherin promoter. KDM4A and KDM4C were also both required for capillary tube formation and vasculogenesis in mice. We observed in zebrafish that KDM4A depletion induced more severe vasculogenesis defects than KDM4C depletion, reflecting the early involvement of KDM4A in specifying endothelial cell fate. These findings together demonstrate the essential role of KDM4A and KDM4C in orchestrating mESC differentiation to endothelial cells through the activation of Flk1 and VE-cadherin promoters, respectively

    A Tie2-Notch1 signaling axis regulates regeneration of the endothelial bone marrow niche.

    Get PDF
    Loss-of-function studies have determined that Notch signaling is essential for hematopoietic and endothelial development. By deleting a single allele of the Notch1 transcriptional activation domain we generated viable, post-natal mice exhibiting hypomorphic Notch signaling. These heterozygous mice, which lack only one copy of the transcriptional activation domain, appear normal and have no endothelial or hematopoietic phenotype, apart from an inherent, cell-autonomous defect in T-cell lineage development. Following chemotherapy, these hypomorphs exhibited severe pancytopenia, weight loss and morbidity. This phenotype was confirmed in an endothelial-specific, loss-of-function Notch1 model system. Ang1, secreted by hematopoietic progenitors after damage, activated endothelial Tie2 signaling, which in turn enhanced expression of Notch ligands and potentiated Notch1 receptor activation. In our heterozygous, hypomorphic model system, the mutant protein that lacks the Notch1 transcriptional activation domain accumulated in endothelial cells and interfered with optimal activity of the wildtype Notch1 transcriptional complex. Failure of the hypomorphic mutant to efficiently drive transcription of key gene targets such as Hes1 and Myc prolonged apoptosis and limited regeneration of the bone marrow niche. Thus, basal Notch1 signaling is sufficient for niche development, but robust Notch activity is required for regeneration of the bone marrow endothelial niche and hematopoietic recovery.We thank Dr. Warren Pear for invaluable advice and for sharing the Notch1+/ΔTAD murine model system. We also thank Dr. Kishore Wary for sharing the Cdh5-CreERT2 mouse model. Drs. Jon Aster and Stephen Blacklow for advice and thoughtful discussion, Dr. Dawson Gerhardt for her help in generating the Notch1- ΔTAD plasmids and vector constructs, Dr. Jan Kitejewski for helpful advice on Notch mutant mice and Drs. Fotini Gounari and Linda Dagenstein of the University of Chicago transgenic mouse facility for help in maintaining the transgenic mouse colonies. The following cores at the University of Illinois at Chicago contributed to this study: RRC Histology Core and RRC Flow Cytometry Core. This study was funded by NIH grants 1R01HL134971 to KVP and 1R01HL136529 to DL.S

    Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury

    Get PDF
    Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11–deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury

    An asymmetric upwind flow, Yellow Sea Warm Current : 1. New observations in the western Yellow Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C04026, doi:10.1029/2010JC006513.The winter water mass along the Yellow Sea Trough (YST), especially on the western side of the trough, is considerably warmer and saltier than the ambient shelf water mass. This observed tongue-shape hydrographic feature implies the existence of a winter along-trough and onshore current, often referred to as the Yellow Sea Warm Current (YSWC). However, the YSWC has not been confirmed by direct current measurements and therefore skepticism remains regarding its existence. Some studies suggest that the presence of the warm water could be due to frontal instability, eddies, or synoptic scale wind bursts. It is noted that in situ observations used in most previous studies were from the central and eastern sides of the YST even though it is known that the warm water core is more pronounced along the western side. Data from the western side have been scarce. Here we present a set of newly available Chinese observations, including some from a coordinated effort involving three Chinese vessels in the western YST during the 2006–2007 winter. The data show unambiguously the existence of the warm current on the western side of YST. Both the current and hydrography observations indicate a dominant barotropic structure of YSWC. The westward deviation of YSWC axis is particularly obvious to the south of 35°N and is clearly associated with an onshore movement of warm water. To the north of 35°N, the YSWC flows along the bathymetry with slightly downslope movement. We conclude that the barotropic current is mainly responsible for the warm water intrusion, while the Ekman and baroclinic currents play an important but secondary role. These observations help fill an observational gap and establish a more complete view of the YSWC.The authors have been supported by China’s National Basic Research Priorities Programmer (2007CB411804 and 2005CB422303), the Ministry of Education’s 111 Project (B07036), the Program for New Century Excellent Talents in University (NECT‐07‐0781), and the China National Science Fundation (40976004, 40921004. and 40930844). J.Y. is supported by the U.S. National Science Foundation and the Woods Hole Oceanographic Institution’s Coastal Ocean Institute

    Clinical and radiological characteristics of pediatric COVID-19 before and after the Omicron outbreak: a multi-center study

    Get PDF
    IntroductionThe emergence of the Omicron variant has seen changes in the clinical and radiological presentations of COVID-19 in pediatric patients. We sought to compare these features between patients infected in the early phase of the pandemic and those during the Omicron outbreak.MethodsA retrospective study was conducted on 68 pediatric COVID-19 patients, of which 31 were infected with the original SARS-CoV-2 strain (original group) and 37 with the Omicron variant (Omicron group). Clinical symptoms and chest CT scans were examined to assess clinical characteristics, and the extent and severity of lung involvement.ResultsPediatric COVID-19 patients predominantly had normal or mild chest CT findings. The Omicron group demonstrated a significantly reduced CT severity score than the original group. Ground-glass opacities were the prevalent radiological findings in both sets. The Omicron group presented with fewer symptoms, had milder clinical manifestations, and recovered faster than the original group.DiscussionThe clinical and radiological characteristics of pediatric COVID-19 patients have evolved with the advent of the Omicron variant. For children displaying severe symptoms warranting CT examinations, it is crucial to weigh the implications of ionizing radiation and employ customized scanning protocols and protective measures. This research offers insights into the shifting disease spectrum, aiding in the effective diagnosis and treatment of pediatric COVID-19 patients

    Cerebrospinal fluid oligoclonal bands in Chinese patients with multiple sclerosis: the prevalence and its association with clinical features

    Get PDF
    BackgroundCerebrospinal fluid oligoclonal band (CSF-OCB) is an established biomarker in diagnosing multiple sclerosis (MS), however, there are no nationwide data on CSF-OCB prevalence and its diagnostic performance in Chinese MS patients, especially in the virtue of common standard operation procedure (SOP).MethodsWith a consensus SOP and the same isoelectric focusing system, we conducted a nationwide multi-center study on OCB status in consecutively, and recruited 483 MS patients and 880 non-MS patients, including neuro-inflammatory diseases (NID, n = 595) and non-inflammatory neurological diseases (NIND, n=285). Using a standardized case report form (CRF) to collect the clinical, radiological, immunological, and CSF data, we explored the association of CSF-OCB positivity with patient characters and the diagnostic performance of CSF-OCB in Chinese MS patients. Prospective source data collection, and retrospective data acquisition and statistical data analysis were used.Findings369 (76.4%) MS patients were OCB-positive, while 109 NID patients (18.3%) and 6 NIND patients (2.1%) were OCB-positive, respectively. Time from symptom onset to diagnosis was significantly shorter in OCB-positive than that in OCB-negative MS patients (13.2 vs 23.7 months, P=0.020). The prevalence of CSF-OCB in Chinese MS patients was significantly higher in high-latitude regions (41°-50°N)(P=0.016), and at high altitudes (>1000m)(P=0.025). The diagnostic performance of CSF-OCB differentiating MS from non-MS patients yielded a sensitivity of 76%, a specificity of 87%.InterpretationThe nationwide prevalence of CSF-OCB was 76.4% in Chinese MS patients, and demonstrated a good diagnostic performance in differentiating MS from other CNS diseases. The CSF-OCB prevalence showed a correlation with high latitude and altitude in Chinese MS patients
    corecore