752 research outputs found

    On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.

    Get PDF
    Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities

    Correlation and entanglement of two-component Bose-Einstein condensates in a double well

    Full text link
    We consider a novel system of two-component atomic Bose-Einstein condensate in a double-well potential. Based on the well-known two-mode approximation, we demonstrate that there are obvious avoided level-crossings when both interspecies and intraspecies interactions of two species are increased. The quantum dynamics of the system exhibits revised oscillating behaviors compared with a single component condensate. We also examine the entanglement of two species. Our numerical calculations show the onset of entanglement can be signed as a violation of Cauchy-Schwarz inequality of second-order cross correlation function. Consequently, we use Von Neumann entropy to quantity the degree of entanglement

    Effects of Personalized Aerobic-Exercise and Resistance-Training Prescriptions on College Students with Anxiety During the COVID-19

    Get PDF
    The COVID-19 pandemic has seriously increased anxiety prevalence among the public, including Chinese college students. However, many exercises cannot be performed as usual under the stay-at-home order. The purpose of this study was to evaluate and compare the effect of personalized individual aerobic-exercise and resistance-training prescriptions on anxiety in college students during the COVID-19. This was a 12-week three-arm randomized control trial using the intention-to-treat principle. Sixty-six college students with anxiety were recruited and randomized into aerobic-exercise (AE), resistance-training (RT), and health-education group (HE). AE and RT groups also received health education. Measures on anxiety and physical activity included Zung Self-Rating Anxiety Scale (SAS), Chinese College Students Mental Health Scale - Anxiety Subscale (CCSMHS-AS) and International Physical Activity Questionnaire-Short Form (IPAQ-SF). All data were collected at the baseline, 4, 8, 12 weeks and 4-week post-intervention. All participants completed the intervention and measurements. The mean (SD) of SAS, CCSMHS-AS score and physical activity was 56.36 (5.63), 19.27 (4.56), 1306.57 (1421.19) (met-min/week). After the intervention, 78.79% of anxiety participants improved from anxiety to “normal”. Participants in all groups showed a statistically and clinically significant improvement after 12-week intervention (p \u3c 0.001). Moreover, such improvement was well-maintained in RT and HE group as there were no significant differences in SAS and CCSMHS-AS at 4-week post-intervention compared to 12 weeks (p \u3e 0.05). However, the SAS score of participants in AE group showed a significant increase during the 4 weeks after intervention (p \u3c 0.05). No significant differences were observed in the effect of AE and RT on anxiety at each time-point (p \u3e 0.05). PA of participants in AE and RT group represented a significant improvement at 4-week post-intervention compared to baseline (p \u3c 0.01). Personalized individual aerobic-exercise and resistance-training combined with health-education resulted in a similar effect on reducing anxiety and improving physical activity, and the effect was better than health education alone. Furthermore, the effect of resistance-training and health-education on reducing anxiety was more stable than that of aerobic-exercise. We recommended 45- to 60-minute home-based individual exercise (including 30- to 40-minute main exercise) with progressive moderate-to-high intensity, 3 times/week for at least 12 weeks for those students with anxiety during the COVID-19 pandemic

    Diurnal concentrations, sources, and cancer risk assessments of 1 PM 2.5 -bound PAHs, NPAHs, and OPAHs in urban, marine and 2 mountain environments

    Get PDF
    International audienceAmbient measurements of PM2.5-bounded polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and oxy-PAHs (OPAHs) were conducted during the summer in Jinan, China, an urban site, and at Tuoji island and Mt. Tai, two background locations. 3.5 h and 11.5 h sampling intervals in daytime and nighttime were utilized to research the diurnal variations of PAHs, NPAHs, and OPAHs. The concentrations of PAHs, NPAHs, and OPAHs were highest at the urban site and lowest at the marine site. The diurnal patterns of PAHs and NPAHs at the urban and marine sites were dissimilar to those observed at the mountain site partly due to the influence of the boundary layer. Vehicle emissions at the urban site made a large contribution to high molecular weight PAHs. 1N-PYR and 7N-BaA during morning and night sampling periods in JN were relatively high. Fossil fuel combustion and biomass burning were the main sources for all three sites during the sampling periods. The air masses at the marine and mountain sites were strongly impacted by photo-degradation, and the air masses at the marine site were the most aged. Secondary formation of NPAHs was mainly initiated by OH radicals at all the three sites and was strongest at the marine site. Secondary formation was most efficient during the daytime at the urban and mountain sites and during morning periods at the marine site. The average excess cancer risk from inhalation (ECR) for 70 years' life span at the urban site was much higher than those calculated for the background sites

    Identification of the shared gene signature and biological mechanism between type 2 diabetes and colorectal cancer

    Get PDF
    Background: The correlation of type 2 diabetes mellitus (T2DM) with colorectal cancer (CRC) has garnered considerable attention in the scientific community. Despite this, the molecular mechanisms underlying the interaction between these two diseases are yet to be elucidated. Hence, the present investigation aims to explore the shared gene signatures, immune profiles, and drug sensitivity patterns that exist between CRC and T2DM.Methods: RNA sequences and characteristics of patients with CRC and T2DM were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus databases. These were investigated using weighted gene co-expression network analysis (WGCNA) to determine the co-expression networks linked to the conditions. Genes shared between CRC and T2DM were analyzed by univariate regression, followed by risk prognosis assessment using the LASSO regression model. Various parameters were assessed through different software such as the ESTIMATE, CIBERSORT, AND SSGSEA utilized for tumor immune infiltration assessment in the high- and low-risk groups. Additionally, pRRophetic was utilized to assess the sensitivity to chemotherapeutic agents in both groups. This was followed by diagnostic modeling using logistic modeling and clinical prediction modeling using the nomogram.Results: WGCNA recognized four and five modules that displayed a high correlation with T2DM and CRC, respectively. In total, 868 genes were shared between CRC and T2DM, with 14 key shared genes being identified in the follow-up analysis. The overall survival (OS) of patients in the low-risk group was better than that of patients in the high-risk group. In contrast, the high-risk group exhibited higher expression levels of immune checkpoints The Cox regression analyses established that the risk-score model possessed independent prognostic value in predicting OS. To facilitate the prediction of OS and cause-specific survival, the nomogram was established utilizing the Cox regression model.Conclusion: The T2DM + CRC risk-score model enabled independent prediction of OS in individuals with CRC. Moreover, these findings revealed novel genes that hold promise as therapeutic targets or biomarkers in clinical settings

    An Experimental Study on the Establishment of Pulmonary Hypertension Model in Rats induced by Monocrotaline

    Get PDF
    Pulmonary hypertension is called PH for short. It is caused by the pulmonary artery vascular disease leading to pulmonary vascular resistance, and the increase right lung compartment load, which resulting in weakening or even collapse of the right ventricular function. The establishment of rat PH model under the action of monocrotaline is a repeatable, simple and accessible operation technique, which has been widely used in the treatment of pulmonary hypertension. This paper discusses the principle and properties of the PH model on rats under the monocrotaline action

    The association between a body shape index and elevated urinary albumin–creatinine ratio in Chinese community adults

    Get PDF
    BackgroundObesity, especially visceral obesity, seems to be one of the most decisive risk factors for chronic kidney disease. A Body Shape Index (ABSI) is an emerging body size measurement marker of visceral obesity. This study aimed to explore whether ABSI is associated with albuminuria in Chinese community adults.MethodsThis cross-sectional study enrolled 40,726 participants aged 40 or older from seven provinces across China through a cluster random sampling method. ABSI was calculated by body mass index, waist circumference, and height. Increased albuminuria was defined as urinary albumin–creatinine ratio (UACR) ≄ 30 mg/g, indicating kidney injury. For ABSI, we divided it by quartile cutoff points and tried to determine the association between ABSI levels and UACR by multiple regression analysis. DAG (Directed Acyclic Graph) was plotted using literature and expert consensus to identify potential confounding factors.ResultsThe average age of subjects with elevated UACR was 61.43 ± 10.07, and 26% were men. The average age of subjects with normal UACR was 57.70 ± 9.02, and 30.5% were men. Multiple logistic regression analysis was conducted and demonstrated that the ABSI quartiles were related to elevated UACR positively (OR [95% CI] Q2 vs. Q1: 1.094 [1.004, 1.197]; OR [95% CI] Q3 vs. Q1: 1.126 [1.030, 1.231]; OR [95% CI] Q4 vs. Q1: 1.183 [1.080, 1.295], p for trend < 0.001) after adjustments for confounding factors. The stratified analysis further showed that with the mounting for ABSI levels, elevated UACR more easily occurred in the people characterized by the elderly, men, and hypertension.ConclusionsIn Chinese community adults, people with higher ABSI levels can be deemed as high-risk individuals with UACR elevation, and it will be beneficial for them to lose weight and significantly reduce visceral fat

    Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems

    Get PDF
    It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a “hotspot” of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the “smoking gun” for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere
    • 

    corecore