1,621 research outputs found

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac

    Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model

    Full text link
    We investigate the primordial trispectra of the general multifield DBI inflationary model. In contrast with the single field model, the entropic modes can source the curvature perturbations on the super horizon scales, so we calculate the contributions from the interaction of four entropic modes mediating one adiabatic mode to the trispectra, at the large transfer limit (TRS≫1T_{RS}\gg1). We obtained the general form of the 4-point correlation functions, plotted the shape diagrams in two specific momenta configurations, "equilateral configuration" and "specialized configuration". Our figures showed that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA

    Charged rotating dilaton black branes in AdS universe

    Full text link
    We present the metric for the (n+1)(n+1)-dimensional charged rotating dilaton black branes with cylindrical or toroidal horizons in the background of anti-de Sitter spacetime. We find the suitable counterterm which removes the divergences of the action in the presence of the dilaton potential in all higher dimensions. We plot the Penrose diagrams of the spacetime and reveal that the spacetime geometry crucially modifies in the presence of the dilaton field. The conserved and thermodynamic quantities of the black branes are also computed.Comment: 13 pages, 3 figures, to appear in Gen. Relat. Gravi

    The Trispectrum in the Multi-brid Inflation

    Full text link
    The trispectrum is at least as important as the bispectrum and its size can be characterized by two parameters Ï„NL\tau_{NL} and gNLg_{NL}. In this short paper, we focus on the Multi-brid inflation, in particular the two-brid inflation model in arXiv.0805.0974, and find that Ï„NL\tau_{NL} is always positive and roughly equals to (65fNL)2({6\over 5}f_{NL})^2 for the low scale inflation, but gNLg_{NL} can be negative or positive and its order of magnitude can be the same as that of Ï„NL\tau_{NL} or even largerComment: 12 pages; minor correction, refs added; further refs added, version for publication in JCA

    Evidence for multiple roles for grainyheadlike 2 in the establishment and maintenance of human mucociliary airway epithelium

    Get PDF
    Most of the airways of the human lung are lined by an epithelium made up of ciliated and secretory luminal cells and undifferentiated basal progenitor cells. The integrity of this epithelium and its ability to act as a selective barrier are critical for normal lung function. In other epithelia, there is evidence that transcription factors of the evolutionarily conserved grainyheadlike (GRHL) family play key roles in coordinating multiple cellular processes required for epithelial morphogenesis, differentiation, remodeling, and repair. However, only a few target genes have been identified, and little is known about GRHL function in the adult lung. Here we focus on the role of GRHL2 in primary human bronchial epithelial cells, both as undifferentiated progenitors and as they differentiate in air-liquid interface culture into an organized mucociliary epithelium with transepithelial resistance. Using a dominant-negative protein or shRNA to inhibit GRHL2, we follow changes in epithelial phenotype and gene transcription using RNA sequencing or microarray analysis. We identify several hundreds of genes that are directly or indirectly regulated by GRHL2 in both undifferentiated cells and air-liquid interface cultures. Using ChIP sequencing to map sites of GRHL2 binding in the basal cells, we identify 7,687 potential primary targets and confirm that GRHL2 binding is strongly enriched near GRHL2-regulated genes. Taken together, the results support the hypothesis that GRHL2 plays a key role in regulating many physiological functions of human airway epithelium, including those involving cell morphogenesis, adhesion, and motility

    Gravity and Electromagnetism with Y(R)F2Y(R)F^2-type Coupling and Magnetic Monopole Solutions

    Get PDF
    We investigate Y(R)F2 Y(R) F^2 -type coupling of electromagnetic fields to gravity. After we derive field equations by a first order variational principle from the Lagrangian formulation of the non-minimally coupled theory, we look for static, spherically symmetric, magnetic monopole solutions. We point out that the solutions can provide possible geometries which may explain the flatness of the observed rotation curves of galaxies.Comment: 10 page

    Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas

    Full text link
    Recently, a new perspective of gravitational-thermodynamic duality as an entropic force arising from alterations in the information connected to the positions of material bodies is found. In this paper, we generalize some aspects of this model in the presence of noncommutative Schwarzschild black hole by applying the method of coordinate coherent states describing smeared structures. We implement two different distributions: (a) Gaussian and (b) Lorentzian. Both mass distributions prepare the similar quantitative aspects for the entropic force. Our study shows, the entropic force on the smallest fundamental unit of a holographic screen with radius r0r_0 vanishes. As a result, black hole remnants are unconditionally inert even gravitational interactions do not exist therein. So, a distinction between gravitational and inertial mass in the size of black hole remnant is observed, i.e. the failure of the principle of equivalence. In addition, if one considers the screen radius to be less than the radius of the smallest holographic surface at the Planckian regime, then one encounters some unusual dynamical features leading to gravitational repulsive force and negative energy. On the other hand, the significant distinction between the two distributions is conceived to occur around r0r_0, and that is worth of mentioning: at this regime either our analysis is not the proper one, or non-extensive statistics should be employed.Comment: 15 pages, 2 figures, new references added, minor revision, Title changed, to appear in EPJ Plu

    Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity

    Full text link
    In this paper, we study topological AdS black branes of (n+1)(n+1)-dimensional Einstein-Maxwell-dilaton theory and investigate their properties. We use the area law, surface gravity and Gauss law interpretations to find entropy, temperature and electrical charge, respectively. We also employ the modified Brown and York subtraction method to calculate the quasilocal mass of the solutions. We obtain a Smarr-type formula for the mass as a function of the entropy and the charge, compute the temperature and the electric potential through the Smarr-type formula and show that these thermodynamic quantities coincide with their values which are calculated through using the geometry. Finally, we perform a stability analysis in the canonical ensemble and investigate the effects of the dilaton field and the size of black brane on the thermal stability of the solutions. We find that large black branes are stable but for small black brane, depending on the value of dilaton field and type of horizon, we encounter with some unstable phases.Comment: 21 pages, 21 figures, references updated, minor editing, accepted in EPJC (DOI: 10.1140/epjc/s10052-010-1483-3

    Twistor Strings with Flavour

    Get PDF
    We explore the tree-level description of a class of N=2 UV-finite SYM theories with fundamental flavour within a topological B-model twistor string framework. In particular, we identify the twistor dual of the Sp(N) gauge theory with one antisymmetric and four fundamental hypermultiplets, as well as that of the SU(N) theory with 2N hypermultiplets. This is achieved by suitably orientifolding/orbifolding the original N=4 setup of Witten and adding a certain number of new topological 'flavour'-branes at the orientifold/orbifold fixed planes to provide the fundamental matter. We further comment on the appearance of these objects in the B-model on CP(3|4). An interesting aspect of our construction is that, unlike the IIB description of these theories in terms of D3 and D7-branes, on the twistor side part of the global flavour symmetry is realised geometrically. We provide evidence for this correspondence by calculating and matching amplitudes on both sides.Comment: 38+12 pages; uses axodraw.sty. v2: References added, minor clarification
    • …
    corecore