128 research outputs found

    INVESTIGATION OF THE FUNCTIONS OF P23 AND COAT PROTEIN OF HIBISCUS CHLOROTIC RINGSPOT VIRUS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa

    Get PDF
    Nucleotide sequences alignment between (a) M. sativa SPL2/3/4 and Arabidopsis SPL3/4/5; (b) MsSPL9 and AtSPL9, respectively. (TIF 3681 kb

    Involvement of CRISPR-Cas Systems in <em>Salmonella</em> Immune Response, Genome Editing, and Pathogen Typing in Diagnosis and Surveillance

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated cas genes (CRISPR-Cas) provide acquired immunity in prokaryotes and protect microbial cells against infection by foreign organisms. CRISPR regions are found in bacterial genomes including Salmonella which is one of the primary causes of bacterial foodborne illness worldwide. The CRISPR array is composed of a succession duplicate sequences (repeats) which are separated by similar sized variable sequences (spacers). This chapter will first focus on the CRISPR-Cas involved in Salmonella immune response. With the emergence of whole genome sequencing (WGS) in recent years, more Salmonella genome sequences are available, and various genomic tools for CRISPR arrays identification have been developed. Second, through the analysis of 115 Salmonella isolates with complete genome sequences, significant diversity of spacer profiles in CRISPR arrays. Finally, some applications of CRISPR-Cas systems in Salmonella are illustrated, which mainly includes genome editing, CRISPR closely relating to antimicrobial resistance (AMR), CRISPR typing and subtyping as improved laboratory diagnostic tools. In summary, this chapter provides a brief review of the CRISPR-Cas system in Salmonella, which enhances the current knowledge of Salmonella genomics, and hold promise for developing new diagnostics methods in improving laboratory diagnosis and surveillance endeavors in food safety

    Virulence Determinants of Non-typhoidal <em>Salmonellae</em>

    Get PDF
    Non-typhoidal Salmonellae (NTS) belong to Salmonella enterica subspecies enterica and are common causes of foodborne illnesses in humans. Diarrhea is a common symptom but infection occasionally results in life-threatening systemic involvement. One member of the group, S. enterica subspecies enterica serovar Typhimurium has been extensively studied in live animal models particularly mice and cattle, leading to a better understanding of the pathogenesis of NTS and the development of diarrhea, respectively. This comprehensive review provides an insight into the genetic regulation of over 200 virulence determinants and their involvement in the four steps of Salmonella pathogenesis, namely: attachment, invasion, macrophage survival and replication, and systemic dissemination. There is, however, a paucity of information on the functions of some virulence factors present on the Salmonella pathogenicity islands (SPIs). The emergence of next generation sequencing (NGS) technology and the availability of more bacterial genomes should provide further insights into the biology of virulence determinants, mechanisms of NTS pathogenesis and host adaptation of Salmonella. The new knowledge should translate into improvement and innovations in food safety, and control of salmonellosis as well as better understanding of zoonotic infections in the context of One Health capturing the risks to humans, animals and the environment

    Attention Consistency Refined Masked Frequency Forgery Representation for Generalizing Face Forgery Detection

    Full text link
    Due to the successful development of deep image generation technology, visual data forgery detection would play a more important role in social and economic security. Existing forgery detection methods suffer from unsatisfactory generalization ability to determine the authenticity in the unseen domain. In this paper, we propose a novel Attention Consistency Refined masked frequency forgery representation model toward generalizing face forgery detection algorithm (ACMF). Most forgery technologies always bring in high-frequency aware cues, which make it easy to distinguish source authenticity but difficult to generalize to unseen artifact types. The masked frequency forgery representation module is designed to explore robust forgery cues by randomly discarding high-frequency information. In addition, we find that the forgery attention map inconsistency through the detection network could affect the generalizability. Thus, the forgery attention consistency is introduced to force detectors to focus on similar attention regions for better generalization ability. Experiment results on several public face forgery datasets (FaceForensic++, DFD, Celeb-DF, and WDF datasets) demonstrate the superior performance of the proposed method compared with the state-of-the-art methods.Comment: The source code and models are publicly available at https://github.com/chenboluo/ACM

    Safety and feasibility of robotic-assisted thoracic surgery after neoadjuvant chemoimmunotherapy in non-small cell lung cancer

    Get PDF
    ObjectivesThis study aimed to evaluate the safety and feasibility of robotic-assisted thoracic surgery (RATS) after neoadjuvant chemoimmunotherapy in NSCLC.MethodsWe retrospectively collected data for NSCLC patients who received thoracic surgery after neoadjuvant chemoimmunotherapy from May 2020 to August 2022. Surgery details, pathological response, and perioperative outcome were compared between video-assisted thoracic surgery (VATS) group and RATS group. Inverse probability of treatment weighting (IPTW) was used to equal the baseline characteristics.ResultsA total of 220 patients were divided into 78 VATS patients and 142 RATS patients. There was no 90-day mortality in either group. RATS patients demonstrated better results in conversion rate to thoracotomy (VATS vs. RATS: 28.2% vs. 7.5%, P &lt; 0.001), number of lymph node stations harvested (5.63 ± 1.75 vs. 8.09 ± 5.73, P &lt; 0.001), number of lymph nodes harvested (13.49 ± 9.325 vs. 20.35 ± 10.322, P &lt; 0.001), yield pathologic-N (yp-N) assessment (yp-N0, 88.5% vs. 67.6%; yp-N1, 7.6% vs. 12.6%; yp-N2, 3.8% vs. 19.7%; P &lt; 0.001), and visual analog scale pain score after surgery (4.41 ± 0.93 vs. 3.77 ± 1.21, P=0.002). However, there were no significant differences in pathological response evaluation for neoadjuvant chemoimmunotherapy (P = 0.493) and complication rate (P = 0.803). After IPTW-adjustment, these results remained constant.ConclusionsRATS reduced the risk of conversion to thoracotomy, provided a better yp-N stage evaluation, and improved pain score; this suggests that RATS is safe and feasible for NSCLC patients after neoadjuvant chemoimmunotherapy

    A Feasibility Study of the Integration of Enhanced Oil Recovery (CO2 Flooding) with CO2 Storage in the Mature Oil Fields of the Ordos Basin, China

    Get PDF
    AbstractRich in energy resources, China's Ordos Basin Shares many similarities with Wyoming's Powder River Basin. As a result, the experience and expertise pertaining to energy development in the Powder River Basin should prove helpful in the Ordos Basin. The b reserves are ranked fourth. The coal deposits in the Ordos Basin account for 39 percent of total Chinese coal reserves (3.98 trillion tonnes), and six of the thirteen largest coal mines in China are located in the basin. The overlapping development of relatively new coal conversion industries with existing oil and gas industries in northern Shaanxi Province is creating an opportunity to apply the systematic approach developed in Wyoming: the integration of geological CO2 storage and CO2-EOR. The coal conversion industry (i.e., coal-to-methanol, coal-to-olefins, etc.) provides affordable, capture-ready CO2 sources for developing large-scale integrated CO2-EOR and carbon storage projects in the Ordos Basin, China. Compared with other CCUS projects, the ability to use CO2 from the coal- conversion industry for CO2-EOR and subsequent geological CO2 storage will make integrated projects in the Ordos Basin more cost-effective and technologically efficient.The low porosity, low permeability, low oil saturation, anomalously low reservoir pressure, and high reservoir heterogeneity of the target storage formations in the Ordos Basin make using CO2 for enhanced oil recovery much more challenging here than in the US. These reservoir characteristics together constitute a major reason that CO2- EOR is not widely employed in the Ordos Basin, even though sources of highly concentrated CO2 (coal conversion plants) have been available for years. Comparisons of reservoir and crude oil properties in the Ordos Basin with the current US CO2-EOR screening guidelines reveal that gravity, viscosity, crude oil composition, and formation type of the Ordos reservoirs all are favorable for CO2 miscible flooding. The major challenges in deploying EOR result from anomalously low reservoir pressure, low porosity, and higher reservoir heterogeneity

    Corrigendum: miR156/SPL10 Modulates Lateral Root Development, Branching and Leaf Morphology in Arabidopsis by Silencing AGAMOUS-LIKE 79

    Get PDF
    The developmental functions of miR156-SPL regulatory network have been extensively studied in Arabidopsis, but the downstream genes regulated by each SPL have not been well characterized. In this study, Next Generation Sequencing-based transcriptome analysis was performed on roots of wild type (WT) and miR156 overexpression (miR156OE) plants. One of the SPL genes, SPL10, which represses lateral root growth in Arabidopsis, was significantly downregulated in miR156OE plants. A transcription factor, AGAMOUS-like MADS box protein 79 (AGL79), was also significantly downregulated in the miR156OE plants, but was upregulated in the SPL10 overexpression (SPL10OE) Arabidopsis plants. In addition, SPL10 was found to bind to the core consensus SPL binding sequences in AGL79 gene. Moreover, analyses of complementation lines revealed a linear relationship between SPL10 and AGL79 in regulating Arabidopsis plant development. In addition, it was observed that plant phenotypes are AGL79 dose-dependent, with higher expression causing narrow leaf shape, less number of leaves and early flowering time, whereas relatively lower AGL79 overexpression produce plants with more rosette leaves and more lateral branches. Our findings revealed direct binding of SPL10 to AGL79 promoter, which further suggests a role for miR156/SPL10 module in plant lateral root growth by directly regulating AGL79

    Chemotaxis Toward Crude Oil by an Oil-Degrading Pseudomonas aeruginosa 6-1B Strain

    Get PDF

    AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1

    Get PDF
    AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr(53)) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC
    corecore