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Chapter

Virulence Determinants of  
Non-typhoidal Salmonellae
Ruimin Gao, Linru Wang and Dele Ogunremi

Abstract

Non-typhoidal Salmonellae (NTS) belong to Salmonella enterica subspecies 
enterica and are common causes of foodborne illnesses in humans. Diarrhea is a 
common symptom but infection occasionally results in life-threatening systemic 
involvement. One member of the group, S. enterica subspecies enterica serovar 
Typhimurium has been extensively studied in live animal models particularly mice 
and cattle, leading to a better understanding of the pathogenesis of NTS and the 
development of diarrhea, respectively. This comprehensive review provides an 
insight into the genetic regulation of over 200 virulence determinants and their 
involvement in the four steps of Salmonella pathogenesis, namely: attachment, 
invasion, macrophage survival and replication, and systemic dissemination. There 
is, however, a paucity of information on the functions of some virulence factors 
present on the Salmonella pathogenicity islands (SPIs). The emergence of next 
generation sequencing (NGS) technology and the availability of more bacterial 
genomes should provide further insights into the biology of virulence determinants, 
mechanisms of NTS pathogenesis and host adaptation of Salmonella. The new 
knowledge should translate into improvement and innovations in food safety, and 
control of salmonellosis as well as better understanding of zoonotic infections in the 
context of One Health capturing the risks to humans, animals and the environment.

Keywords: non-typhoidal Salmonellae, virulence determinants, Typhimurium, 
attachment, intracellular survival, systemic dissemination, NGS, food safety, 
Salmonella pathogenicity islands, SPI

1. Introduction

Non-typhoidal Salmonella (NTS), a major cause of diarrheal disease globally, 
is estimated to cause 93 million enteric infections and 155,000 diarrheal deaths 
each year and is a leading cause of foodborne infections worldwide [1]. In Canada, 
88,000 people are estimated to fall ill from foodborne NTS each year (90% credible 
intervals: 58,532–125,525) [2] with a mean hospitalization of about 925 individuals 
and 17 deaths [3]. An estimated 1 million cases of NTS infections occur annually in 
the United States alone, resulting in 19,000 hospitalizations and 380 deaths (http://
www.cdc.gov/foodborneburden/PDFs/pathogens-complete-list-01-12.pdf). The 
genus Salmonella consists of Gram-negative, facultative intracellular bacteria and 
belongs to the Enterobacteriaceae family [4]. Historically, Salmonella organisms are 
serologically characterized using the conventional serotyping method known as the 
White-Kauffmann-Le Minor scheme which is based on the somatic (O), flagellar 
(H) and capsular (vi) antigens. Over 2600 serotypes are known to be present in 
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a wide range of hosts including humans, cattle, pigs, horses, companion animals, 
reptiles, fish, avian, and insects [5]. The most commonly encountered pathogenic 
serovars belong to S. enterica subspecies enterica [6].

Some pathogenic Salmonella serovars are restricted to particular host species and 
are not found in other species. Examples of host-restricted Salmonella are serovars 
Typhi, Gallinarum, and Abortusovis, and they predictably cause systemic infection 
in their hosts namely, humans, fowls and ovines, respectively [7]. Another group of 
serovars are host-adapted including Dublin and Choleraesuis and primarily cause 

Figure 1. 
Pathogenesis of Salmonella following contact with gut epithelium. (I) Salmonella cells attach to the epithelium 
mainly via adhesins, the representative virulence genes involved are fim, Saf, Bcf, stf, csg, lpf, Pef, sti, sth, 
hof, as well as a negative regulator of STM0551 (purple circles). (II) Three invasion methods are illustrated: 
M cells uptake bacteria cells through receptor mediated endocytosis, membrane ruffling and cytoskeletal 
rearrangement resulting in engulfment; alternatively, bacterial cells can be directly taken up by dendritic 
cells by phagocytosis. The main virulence factors involved are inv, pip, pag, prg, sap, sip, spa, spv, sop, rop, hil 
and sii (pink triangles). (III) Salmonella cells taken up by macrophages are localized within a Salmonella 
containing vacuole (SCV). The representative virulence genes involved in this process are mgt, Ssa, Sse, Ssr, 
CsrA and Hfq (light red star highlighted). (IV) Phagocyte-mediated systemic dissemination through blood 
system, mainly to liver, spleen and bone marrow. The virulence genes involved are iro, rfa, rfb, fes, Fhu, fep, 
ent, wzx and wzz (yellow diamond highlighted).
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disease in cattle and pigs respectively, but infrequently cause opportunistic disease 
in another host species especially humans [7, 8]. The most common non-adapted 
Salmonella are serovars Typhimurium and Enteritidis and they have been studied in 
live animal models such as mice and cattle, leading to a better understanding of the 
pathogenesis of NTS and the development of diarrhea [7]. S. typhimurium causes 
a systemic infection in mice that resembles typhoid fever caused by S. enterica 
serovar Typhi in humans [9]. While a vast majority of cases in otherwise healthy, 
Salmonella-infected humans present clinically as a self-limiting gastroenteritis, S. 
typhimurium can cause life-threatening systemic, invasive disease and bacteremia in 
some patients [10] but the reasons and mechanisms dictating the different disease 
manifestations in infected humans are not clear.

The advent of microbial whole genome sequencing promises to provide 
insights to better understand the biology of virulence determinants and mecha-
nisms of NTS pathogenesis. Genomes of Salmonella are generated increasingly 
at a faster rate and deposited in public databases [11]. Further understanding 
of genome diversity and variation of bacterial pathogens has the potential to 
improve quantitative risk assessment and assess the evolution of Salmonella 
and emergence of new strains [12]. Mining of the repository of genomes should 
provide new information expected to complement existing knowledge on viru-
lence genes derived from host infection studies especially involving Salmonella 
mutants. The Salmonella Foodborne Syst-OMICS database (SalFoS) was devel-
oped as a platform to improve diagnostic accuracy, to develop control methods 
in the field and to identify prognostic markers in epidemiology and surveillance 
[13]. Bioinformatics analyses of genomes are expected to reveal the mechanisms 
of action of virulence genes and help decipher whether there is a dichotomy in 
the genes contributing to invasive disease compared to restricted pathogenesis in 
the intestinal tract [14].

This review provides an overview of the genetic regulation of over 200 virulence 
determinants highlighting their involvement in each of the four steps of Salmonella 
pathogenesis, namely: attachment, invasion, macrophage survival and replication, 
and systemic dissemination (Figure 1). Further analysis of virulence genes will 
provide us insights in to understanding the mechanisms of invasive disease which 
appear distinct from gastroenteritis. For instance, the organisms which are respon-
sible for invasive disease have fewer genes because of pseudogenization. Many of 
these virulence genes have redundant functions; however two Salmonella molecules 
are known to exert a dominant effect in pathogenesis, namely: lipopolysaccharide 
(LPS) and invasion protein A (invA). Many virulence factors have distinct and 
unique functions but cooperative crosstalk has been documented at the differ-
ent steps of infection, e.g., protein products of genes encoded on two Salmonella 
pathogenicity islands (SPI), SPI-2 and SPI-4.

2. Virulence determinants involved in Salmonella pathogenesis

2.1 Attachment

In a majority of cases, infection occurs following ingestion of Salmonella by the 
host. Before Salmonella can gain entry into the epithelial cell lining the host’s gut 
mucosa, it first needs to attach to the cell. NTS attachment is facilitated by fimbriae, 
non-fimbriae factors of autotransporter and outer-membrane proteins, which serve 
as adhesions; up to 20 adhesion molecules have been described so far and it has been 
demonstrated that the entire adhesiome of S. enterica serotype Typhimurium can be 
expressed [15], which facilitates understanding such a large repertoire of adhesions 
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contributing to colonization of a broad range of host species and adaptation to vari-
ous environment within the host.

2.1.1 Fimbrial adhesins

Fimbriae, also known as pili, are thin, filamentous appendages protruding on 
the bacterial surface and consist of polymerized aggregates of small molecular 
weight monomers of the fimbrin protein [16]. Characteristically, fimbriae medi-
ate the initial attachment of Gram-negative bacterial pathogens to host cells and 
surfaces [17]. In Salmonella, the initial contact results in relatively weak adher-
ence of the bacteria to intestinal epithelial cells but soon induces de novo bacterial 
protein synthesis which increases the strength and intimacy of the attachment [18]. 
This process is also accompanied by the development and assembly of a unique 
secretion apparatus called the Type 3 Secretion System (T3SS) which is required 
for Salmonella to invade epithelial cells [19]. The chromosome of S. typhimurium 
contains 13 fimbrial operons, afg (csg), bcf, fim, lpf, pef, saf, stb, stc, std, stf, sth, sti, 
and stj [20–22] (Table 1 and Figure 1). Eight types of fimbriae which have been 
experimentally investigated [23] are outlined below.

2.1.1.1 Mannose-sensitive Type I fimbriae (Fim)

Mannose-sensitive Type I fimbriae (Fim) are encoded by the fim ACDHIFZYW 
operon and bind to D-mannose-containing receptors on host cell surface as well as 
the glycoprotein laminin of the extracellular matrix [24]. Type I fimbriae promoted 
bacterial attachment to epithelial cells, facilitated the invasion of HEp-2 cells and 
HeLa cells and the colonization of the gut mucosa in chicken, mouse, rat and swine 
[25, 26]. An immunization experiment using purified Fim protein led to the protec-
tion of laying hens against egg contamination and colonization of the reproductive 
organs by S. enteritidis [27]. FimA, FimF, and FimH are necessary for the assembly 
of Type 1 fimbriae on S. typhimurium [24]. Differently, STM0551 gene plays a nega-
tive regulatory role in the regulation of type 1 fimbriae in S. typhimurium [28].

2.1.1.2 Plasmid-encoded fimbriae (Pef)

Plasmid-encoded fimbriae (Pef) participate in the attachment of bacteria to 
the surface of murine small intestine and are necessary for fluid production in 
the infant mouse similar to the observation with the fimbriae of enterotoxigenic 
Escherichia coli and Vibrio cholerae [29]. Expression of pef gene is regulated by 
DNA methylation [30]. Purified Pef specifically binds the trisaccharide Galβ1-
4(Fucα1-3) GlcNAc (also known as the Lewis X blood group antigen or Lex), which 
are preponderant on the surface of human erythrocytes, skin epithelium and 
mucosal surfaces [31].

2.1.1.3 Long polar fimbriae (Lpf)

Long polar fimbriae (Lpf) encoded by the lpfABCDE fimbrial operon is involved 
in the colonization of murine Peyer’s patches by mediating adherence to M cells, a 
preferred port of entry for Salmonella in mice [32]. Mutation of the lpfC gene which 
encodes the fimbrial outer membrane usher attenuated the virulence of Salmonella 
typhimurium in orally exposed mice as shown by a 5-fold increase in the number  
of organisms needed to kill 50% of test animals (i.e., LD50) when compared to  
the wild type organism. Lpf is also involved in the early stages of biofilm formation 
on host epithelial cells [33] and participate in intestinal persistence in mice [34].  
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Lpf synthesis is regulated by an on–off switch mechanism (phase variation) to 
avoid host immune responses [35].

2.1.1.4 Thin aggregative fimbriae

Thin aggregative fimbriae also known as curli [36] with the designation Agf/
Csg, are encoded by the agf/csgBAC gene cluster [37]. The thin aggregative fimbriae 
for Enteritidis which is known as SEF 17 is responsible not only for the auto-aggre-
gative phenotype of the bacteria, but for fibronectin binding [38] and has been 
shown in vitro to bind immortalized small intestinal epithelial cells from mice [36]. 
Mutation in agfB resulted in a 3- to 5-fold increase in the oral LD50 of Typhimurium 
for mice [39].

2.1.1.5 Bovine colonization factor (Bcf)

Bovine colonization factor (Bcf) is encoded by genes in the bcf gene cluster. The 
fimbrial usher protein encoded by bcfC is required for colonization of bovine but 
not murine Peyer’s patches in oral infection models of calves and mice [40]. The 
bcf gene together with five other fimbrial operons—lpf, stb, stc, std, and sth—are 
reported to be required for long-term intestinal carriage of Typhimurium in geneti-
cally resistant mice [34].

Virulence genes Location* Functions

BcfABCDEFGH Chromosome Contribute to long-term intestinal carriage and bovine 

colonization

csgABCDEFG Chromosome Curlin subunit; assembly and transport component in curli 

production; DNA-binding transcriptional regulator

fimCDFHIWYZ Chromosome Adhesion to epithelial cells; biofilm formation

hofBC Chromosome Type IV pilin biogenesis protein

lpfABCDE Chromosome Biofilm formation, contribute to long-term intestinal carriage

misL SPI-3 An extracellular matrix adhesion involved in intestinal 

colonization

pefA Plasmid Adhesion to crypt epithelial cells; induction of proinflammatory 

response

ppdD Chromosome Putative major pilin subunit

SafC Chromosome Salmonella atypical fimbria outer membrane usher

ShdA CS54 Outer membrane

StdB Chromosome Contribute to long-term intestinal carriage

stfACDEFG Chromosome Not required for long-term intestinal carriage of mice

sthABD Chromosome Outer membrane fimbrial usher. Putative fimbrial subunit and 

chaperone protein

StiABC Chromosome Putative fimbrial subunit/usher/chaparone

STM0551 Chromosome Downregulates fimbrae protein expression and acts as a negative 

regulator of virulence

STM4595 Chromosome Unknown function

*SPI-3 and CS54 are genomic islands on Salmonella chromosome.

Table 1. 
Location and function of the major proteins and virulence determinants contributing to Salmonella 
attachment.
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2.1.1.6 Salmonella atypical fimbriae (Saf)

Salmonella atypical fimbriae (Saf) are encoded by the chromosomal safABD 
operon. A group of BALB/c mice immunized subcutaneously with SafB/D- and 
recombinant cholera toxin B subunit (rCTB)-conjugated micro-particles had sig-
nificantly lower CFU counts than the untreated control group [41]. Two additional 
functions - poly-adhesive and self-associating activities – were attributed to the Saf 
pili and appear to contribute to host recognition and biofilm formation [42].

2.1.1.7 Typhimurium fimbriae std and stf operons

Std operon is required for adherence to human colonic epithelial cells and for 
cecal colonization in the mouse by binding to cecal mucosa receptors containing 
α(1, 2) fucose residues [34, 43]. Stf fimbriae share homology with the MR/P fim-
briae of Proteus mirabilis and E. coli Pap fimbriae [44]. StfA expression is induced 
during infection of bovine ileal loops [45].

2.1.1.8 Enteritidis fimbrial SEF14

Enteritidis fimbrial SEF14 contributes to colonization of chicken intestine, liver, 
spleen and reproductive organs [46, 47]. The fragment encoding genes respon-
sible for SEF14 biosynthesis contain three genes, sefABC. The putative adhesion 
subunit encoded by sefD is essential for efficient uptake or survival of Enteritidis 
in macrophages, as the sefD mutants were not readily internalized by peritoneal 
macrophages compared with the wild-type bacteria soon after intraperitoneal 
infection of mice [48]. The sefD mutant was severely attenuated after both oral and 
intraperitoneal infection of BALB/c mice (approximate LD50: >104 (mutant) vs. 
<10 (wild type)) [48]. In the mouse model, egg-yolk derived anti-SEF14 antibodies 
afforded passive protection [49].

2.1.2 Non-fimbrial adhesins

Four distinct non-fimbrial intestinal colonization factors have been identified:

2.1.2.1 MisL

MisL encoded within the SPI-3, is an outer membrane fibronectin-binding 
autotransporter protein which is induced upon bacterial contact with the intestinal 
epithelial cells, and is required for colonization of the murine cecum and for intestinal 
persistence. MisL binds fibronectin and collagen IV via its passenger domain [50].

2.1.2.2 ShdA

ShdA gene is located in the 25-kb pathogenicity island called CS54 which is pres-
ent only in S. enterica subspecies enterica [51]. ShdA is a large fibronectin/collagen 
I-binding outer membrane protein which is induced in vivo in the murine caecum 
[52]. It is required for Typhimurium colonization in the murine caecum and Peyer’s 
patches of the terminal ileum [53] and for efficient and prolonged shedding of the 
organism in feces [51].

2.1.2.3 BapA

BapA is a huge surface-associated protein and secreted via its downstream type I 
secretion system, BapBCD. BapA contributes to murine intestinal colonization and 
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subsequent organ invasion. Mice orally inoculated with BapA-deficient strain sur-
vived longer and have a significant reduction in mortality rate than those inoculated 
with the wild-type strain [54].

2.1.2.4 SiiE

SiiE is a SPI4-encoded protein and works as the substrate protein of the 
T1SS. SiiE is secreted into the culture medium but mediates contact-dependent 
adhesion to epithelial cell surfaces. SiiE codes for a giant non-fimbrial adhesion 
of 600 kDa and consists of 53 repeats of immunoglobulin domains; this is a T1SS-
secreted protein that functions as a non-fimbrial adhesion in binding to eukaryotic 
cells [55].

2.2 Intestinal phase: invasion and intracellular survival

Shortly after adhesion to a host cell, Salmonella invasion proceeds as a con-
sequence of the activation of host cell signaling pathways leading to profound 
cytoskeletal rearrangements [56]. These internal modifications dislocate the normal 
epithelial brush border and induce the subsequent formation of membrane ruffles 
that engulf adherent bacteria in barge vesicles called Salmonella containing vacuoles 
(SCVs), which is the only intracellular compartment where Salmonella cells sur-
vive and replicate [57, 58]. Simultaneously, induction of secretory response in the 
intestinal epithelium initiates recruitment and transmigration of phagocytes from 
the submucosal space into the intestinal lumen. Alternatively, Salmonella cells may 
be directly engulfed by dendritic cells from the submucosa. Taken up During SCV 
maturation, Salmonella induces de novo formation of an F-actin meshwork around 
bacterial vacuoles, a process which is termed vacuole-associated action polymeriza-
tion (VAP) and is important for maintenance of the integrity of the vacuole mem-
brane [59]. Furthermore, intracellular Salmonella can induce the formation of long 
filamentous membrane structure called Salmonella-induced filaments (SIFs) [60], 
which may lead to an increased availability of nutrients within the SCV [61]. A 
fraction of SCVs transcytose to the basolateral membrane. Once across the intesti-
nal epithelium, Salmonella are engulfed by phagocytes and internalized again with 
SCVs, triggering a response similar to that reported inside epithelial and M cells to 
ensure bacterial survival and replication [62]. The pathogenic bacterium must at 
this stage employ many virulence strategies to evade the host defense mechanisms 
(Figure 1).

The majority of the virulence determinants are located within highly conserved 
SPIs on the chromosome, while others are either on a virulence plasmid (pSLT) or 
elsewhere in the chromosome. To date, 21 SPIs have been identified in Salmonella, 
and the generalist S. typhimurium and the invasive S. typhi genomes share 11 (SPIs-1 
to 6, 9, 11, 12, 13 and 16). Two SPIs namely SPI-8 and 10 were initially found in S. 
typhi and without counterparts in S. typhimurium chromosome; SPI-14 is specific 
to S. typhimurium, while SPIs-7, 15, 17 and 18 are specific to S. typhi; and SPIs-19, 
20 and 21 are absent in both of them [63]. Because of the prominence of the SPIs 
in pathogenesis, the virulence factors encoded on the major SPIs, SPI-1 to SPI-5 are 
described below, and their respective functions summarized (Tables 2 and 3).

2.2.1  SPI-1 mediates contact-dependent invasion of the intestinal epithelium and 
enteropathogenesis

SPI-1 codes for several effector proteins that trigger invasion of epithelial cells 
by mediating actin cytoskeletal rearrangements and hence internalization of the 
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Virulence genes Location* Functions

Crp Chromosome cAMP-regulatory protein

hilACD SPI-1 Promote phop-repressed prgHIJK, sipA, sipC, invF, and orgA; 

activates the expression of the hilA gene

Hnr SPI-2 SPI-2 regulator (transcriptional and post-transcriptional)

HtrA Resistance to periplasmic stress

IacP SPI-1 Posttranslational modification

iagB SPI-1 Invasion

invABCEFGIJ SPI-1 Secretion and chaperone; promote sipBCDA, sigD and sicA

msgA Chromosome Unknown function

ompR/envZ SPI-2 Regulates ssrAB expression

orgABC SPI-1 Pathogenesis; secretion

phoR/Q SPI-2 Regulates ssrAB expression; down-regulates the transcription 

of its master regulator HilA, control mgtC

pagACDP SPI-11 Resistance to AMP, macrophage cytotoxicity

pipABB2CD pipC 

(sigE)

SPI-5 Pathogenesis, effector protein; sif extension; SCV maturation 

and positioning

prgHIJK SPI-1 Secretion

Prc Resistance to periplasmic stress

rpoES rpoS (katF) SPI-2 SPI-2 regulator (transcriptional and post-transcriptional); 

controls the transcription of the regulatory gene spvR; 

expression of rpoS is induced after entry of Salmonella 

into macrophages or epithelial cells, or in vitro during the 

stationary growth phase

rtsA Chromosome Activates the expression of the hilA gene

sapABCDF Resistance to AMP, macrophage cytotoxicity

sifA SPI-2 Sif formation in epithelial cells and maintenance of SCV 

membrane integrity

siiCDEF SPI-4 Translocation; adhesion to apical side of polarized epithelial 

cells; involved in T3SS-1 dependent invasion

sicAP SPI-1 Chaperone for sipBC

sipA (sspA) SPI-1 Stabilization and localization of actin filaments during 

invasion, stabilization of VAP, correct localization of SifA and 

PipB2, SCV perinuclear migration and morphology, promote 

inflammatory response and fluid secretion

sipBCD (sspBCD) SPI-1 Adhesion to epithelial cells, early macrophage pyroptosis, 

macrophage autophagy; Adhesion to epithelial cells

SpaSRQPO SPI-1 EscU/YscU/HrcU family type III secretion system export 

apparatus switch protein; antigen presentation protein SpaO

sptP SPI-1 Disruption of the actin cytoskeleton rearrangements 

by antagonizing SopE, SopE2, and SigD, downregulate 

inflammatory response

sirA SPI-1 SirA/BarA encoded outside SPI-1 activates HilA

slrP Chromosome Adhesion to epithelial cells

slyA SPI-2 Regulates resistance to oxidative stress

sspH1H2 Phage Localize to the mammalian nucleus and inhibits NF-κB-

dependent gene expression; SCV maturation and positioning
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bacteria. These effectors are translocated into host cell by means of a Type III 
Secretory System or T3SS-1 [64], which is made up of proteins encoded by the 
SPI-1, such as inv, spa, prg and org [65]. Naturally occurring mutants of Salmonella 
have been found in the environment with a deletion of a vast DNA segment of SPI-1 
locus and are deficient for inv, spa, and hil hindering their ability to enter cultured 
epithelial cells [66]. Mutations leading to a defective secretory function of T3SS-1 
led to a 50-fold increase in LD50 following oral administration of Typhimurium in 
the mouse model [67]. The prg/org and inv/spa operons encode the needle com-
plex, whereas the sic/sip operons encode the effector proteins and the translocon 
(SipBCD), a pore-forming structure that embeds in the host cell membrane and 
delivers these effectors to the host cytosol. In addition, several chaperones are also 
encoded within SPI-1. For example, SlrP mediate ubiquitination of ubiquitin and 
thioredoxin [68] and one of the SPI-1 regulons, STM4315 (rtsA) interferes with 
the interactions of S. typhimurium and host cells [69]. In general, the expression of 
SPI-1 genes is subject to control by complex regulatory mechanisms involving local 
regulators such as HilA, iagB and InvF which are necessary for host invasion by 
Salmonella and induction of gastroenteritis [70, 71]. For example, prgHIJK, invA, 
invJ, and orgA are primarily regulated by HilA [71]. In addition, two major global 
regulatory networks, SirA/BarA and PhoP/PhoQ , indirectly regulate the expression 
of the invasion-associated genes via HilA [72, 73].

2.2.2 SPI-2 is essential for survival and replication in macrophage

The SPI-2 is composed of two segments. The smaller portion contains the 
ttrRSBCA operon, which is involved in tetrathionate reduction, and seven open 
reading frames (ORFs) of unknown function. The expression of these genes may 
contribute a growth advantage over the microbiota [74]. The larger portion of this 
island was shown to be critical for the ability of Salmonella to survive and replicate 

Virulence genes Location* Functions

sodABD Resistance to oxidative stress

SopABDD2EE2 sopB 

(sigD)

SPI-5 Chloride secretion; promote actin cytoskeletal 

rearrangements, invasion and inhibition of apoptosis of 

epithelial cells, induction of proinflammatory response 

and fluid secretion, SCV size, instability, maturation and 

positioning, nitrate respiration, outgrowth in the intestine; 

inhibition of vesicular trafficking; replication inside 

macrophages; sif formation

spaOPQRS SPI-1 Secretion

SprB SPI-1 Regulation of transcription, DNA-templated

spvABCD Plasmid Modifies actin and destabilizes the cytoskeleton of infected 

cells; SCV maturation and positioning; induction of apoptosis; 

Host cell signaling

SsJ Resistance to oxidative stress

STM2231 SPI-2 SPI-2 regulator (transcriptional and post-transcriptional)

YejABEF Chromosome Resistance to AMP, macrophage cytotoxicity

ymdA Chromosome Stress response

*SPI1–5 are genomic islands on Salmonella chromosome.

Table 2. 
Location and function of the major proteins and virulence determinants contributing to Salmonella invasion.
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inside host cells—both epithelia cells and macrophages—within the SCV [75]. 
Non-functional SPI-2 mutants are unable to colonize internal target organs such as 
spleen and liver of mice, although they penetrate the intestinal barrier as efficiently 
as the wild type strain [76]. These mutants were attenuated by at least five orders of 
magnitude compared with the wild type strain after either oral or intraperitoneal 
inoculation of mice [75]. The SPI-2 related events are triggered by the action of 
effector proteins with its own T3SS known as T3SS-2, which also encodes its proper 
translocon machinery named SseBCD [77]. Gene sequence similarity to the known 
components of other T3SS has been used to propose functions for SsaN, SsaR, SsaS, 
SsaT, SsaU and SsaV as coding for putative proto-channel components, SsaD/SpiB, 
SsaJ, SsaK and SsaQ appear to code for basal components, whereas SsaC/SpiA may 
code for an outer ring protein [78]. Generally, SPI-2 contains four types of virulence 
genes: ssa encodes T3SS-2 apparatus; ssr encodes regulators; ssc encodes the chaper-
ones and sse encodes the effectors (Table 2) [79, 80].

2.2.3 SPI-3 contributes to intramacrophage proliferation

Unlike SPI-1 and SPI-2, only four ORFs within SPI-3 have been shown to con-
tribute to replication in macrophages via a high-affinity Mg2+ uptake system [81]. 
The mgtC gene encoding a 22.5-kDa hydrophobic membrane protein, is the major 
virulence gene factor found within this locus, and is responsible for growth in Mg2+ 
limiting environment, intramacrophage survival, and systematic virulence in mice 
[82]. The transcription of mgtC is followed by activation of PhoP-PhoQ in response 
to low Mg2+ levels [81].

Virulence genes Location Functions

CsrA RNA chaperones

Hfq SPI-2 SPI-2 regulator (transcriptional 

and post-transcriptional), RNA 

chaperones

mgtABCD SPI-3 A hydrophobic membrane 

protein; Mg2+ transporter (Mg2+-

transporting P-type ATPase)

SsaABCDEFGHIJKLMNOPQRSTUV

ssaB (spiC),

ssaC (spiA),

ssaD (spiB),

ssaR (yscR).

SPI-2 Regulate the secretion of 

translocon proteins under 

conditions that simulate 

the vacuolar environment; 

interferes with vesicular 

trafficking; intracellular bacterial 

proliferation; secretion

sscAB Chromosome Putative type III secretion 

system chaperone protein or 

pathogenicity island effector 

protein

sseABCDFGIJL SPI-2 Translocation; sif formation in 

epithelial cells; SCV maturation 

and positioning; SCV membrane 

dynamics; nuclear response-gene 

expression;

ssrAB (ssrA/SpiR) SPI-2 Regulates SPI-2 gene expression

Table 3. 
Location and function of the major proteins and virulence determinants contributing to Salmonella 
macrophage survival and replication.
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2.2.4 SPI-4 is involved in colonization

The fourth SPI contributes to Salmonella colonization in the intestine of cattle, 
but not of chicks [83]. Loss of SPI-4 attenuates the oral but not intraperitoneal viru-
lence of serovars Typhimurium and Enteritidis in mice [84]. Three genes namely 
SiiC, SiiD, and SiiF produce proteins that form the type 1 secretion system (T1SS); 
the fourth gene, siiE codes for a giant non-fimbrial adhesion exported by the T1SS 
and mediates contact-dependent adhesion to polarized epithelial cells rather than to 
non-polarized cells. In contrast, SiiA and SiiB are not secreted but represent inner 
membrane proteins whose function is unknown [55, 85]. Recently, transmembrane 
mucin MUC1 was shown to be required for Salmonella siiE-mediated entry of 
enterocytes via the apical route [86].

2.2.5 SPI-5 is associated with enteropathogenicity

The SPI-5 locus is well characterized in the serovar Dublin infection in calves. 
This bovine-adapted serovar primarily causes bacteremia rather than gastroenteritis 
in humans. This region comprises six genes namely, pipD, orfX, sopB (also known 
as sigD), pipC (also known as sigE), pipB, and pipA [87]. Four gene products which 
include three SPI-5 Pip proteins (PipD, PipB, PipA) and one SPI-1 SopB protein are 
involved in secretory and inflammatory responses in bovine ligated ileal loops but they 
do not appear to play a significant role in the development of systemic infection in mice 
inoculated by the intraperitoneal route [87, 88]. Furthermore, it has been found that 
SigE serves as a chaperone for the S. typhimurium invasion protein, SigD [89].

2.2.6  Crosstalk between SPI-1 and SPI-2 gene products to promote Salmonella survival 
and virulence

The SPI-2 genes are activated after Salmonella gains access into the SCV [76]. 
T3SS-2 secretes multiple effector proteins into different subcellular fractions where 
they interfere with various host cellular functions to establish a replication-per-
missive environment [90]. The identified effectors are encoded within SPI-2 (e.g., 
SpiC, SseF and SseG) and outside SPI-2 (e.g., SifA, SseI, SseJ and SspH 2) [23]. 
These SPI-2-encoded effectors together with some of SPI-1-encoded effectors (e.g., 
SipA, SipD, SopA, SopE, SopB) that persist in the host cytosol after invasion, are 
distributed in different cellular compartments including the vascular membrane of 
SCV and Sif, host cytosol, cytoskeleton, Golgi apparatus, and nucleus. These mol-
ecules influence distinct intracellular events and collectively contribute to establish 
a Salmonella replicative niche in macrophages [91]. These intracellular events 
include: inhibition of endocytic trafficking, evasion of NADPH oxidase-dependent 
killing [92, 93], induction of a delayed apoptosis-like host cell death [94], assembly 
of a meshwork of F-actin around the SCV [59], accumulation of cholesterol in the 
SCV [95], and interference with the localization of inducible nitric oxide synthase 
to the SCV [96]. Efficient replication has been found to be associated with two 
phenotypes involving host microtubule cytoskeleton and its motor proteins, Golgi 
apparatus-associated juxtanuclear positioning of SCV [97–99] and Sifs formation 
which appear as tubular membrane extensions of SCVs enriched in lysosomal 
glycan proteins [100].

2.2.7 Joint regulation between SPI-1 and SPI-4

The functional relatedness between SPI-1 and SPI-4 is reflected by their co-
regulation by the same set of key regulators, for example, a transcriptional activator 
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SprB encoded within SPI-1 and regulated by HilA under similar environmental 
conditions; SprB directly activates SPI-4 gene expression and weakly represses 
SPI-1 gene expression through HilD [101].

2.3 Intramacrophage survival and replication

Similar mechanisms occur inside epithelial cells after intestinal invasion and 
once bacteria have been internalized by macrophages. Briefly, Salmonella cells are 
localized in the SCV once engulfment is completed. Preserving the SCV membrane 
integrity plays a crucial role in allowing Salmonella replication inside these intracel-
lular niches. These procedures are regulated by T3SS-2 transporting action and its 
translocon machinery, namely SseBCD complex [77]. Hence, the required effectors 
which are encoded both inside and outside SPI-2 facilitate the success of Salmonella 
intramacrophage survival. The SPI-2 gene expression is triggered in response to 
a number of environmental signals mimicking the vacuolar environment of SCV, 
including stationary growth phase, low osmolarity [102], low concentrations of 
Mg2+, Ca2+ or PO3 [103, 104], and low pH [76]. The expression of SPI-2 genes is 
coordinately regulated at both transcriptional and post-transcriptional levels. 
During the transcription of SPI-2 genes, many two-component regulatory sys-
tems are involved, including SsrA-SsrB, OmpR-EnvZ and PhoP-PhoQ as well as 
transcriptional regulators, namely SlyA and the alternative sigma factor of RNA 
polymerase RpoE. The main regulatory proteins that act post-transcriptionally 
are the RNA chaperons, including Hfq, CsrA, and SmpB. The mgtC gene located 
in SPI-3 has been shown to contribute to replication in macrophages. All the men-
tioned virulence determinants can be found in Table 3 and Figure 1.

2.4 Systemic infection/dissemination

Internalization of the infecting Salmonella within SCV is followed by systemic 
spread through other target organs, such as the spleen and liver. As a prerequisite 
for spread, the bacterial cells must evade the innate immune system. During this 
process, serum resistance or resistance to complement-mediated serum killing is 
a major virulence factor for the development of systemic salmonellosis. It involves 
three major factors, namely LPS, outer membrane proteins PagC and Rck and 
siderophores (Table 4 and Figure 1).

2.4.1 LPS constitutes a chemical and physical protective barrier for the cell

LPS of Gram-negative bacteria, a major component of the outer membrane, 
constitute a chemical and physical protective barrier for the cell. LPS consists of 
the hydrophobic lipid A, a short non-repeating core oligosaccharide and a long 
distal repetitive polysaccharide termed O-antigen or O-side chain [105]. Complete 
LPS is characterized by long O-antigen which confers the smooth (S) phenotype 
on Salmonella. The O-antigen is a major component associated with serum resis-
tance. Incomplete LPS devoid of O-antigen leads to rough (R) phenotype, which is 
of low virulence [106]. Naturally occurring infections are caused by S-phenotype 
Salmonella, which are resistant to complement killing [107, 108]. There is a cor-
relation between the amount, structure, and chain length of the O-antigen and 
virulence [109]. The long O-antigen of LPS confers on the organism the ability to 
resist complement-mediated serum killing by sterically hindering the insertion 
of the membrane attack complement complex (C5b-9) into the bacterial outer 
membrane [107, 108].
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Surface expression of O-antigen involves multiple steps: O-antigen biosyn-
thesis in the inner membrane (rfb), translocation across the inner membrane 
by Wzx flippase (wzx), polymerization (wzz, rfc and rfe) and ligation on to 
the preformed Core-Lipid A complex by WaaL ligase (rfaL). The Core-Lipid A 
is translocated independently by the ATP-binding cassette (ABC) transporter 
MsbA [110, 111]. Complete LPS molecules are then transported to the surface 
across the periplasm and outer membrane by the Lpt (LPS transport) pathway 
[111]. Defects in any of the above steps would affect the surface display of the 
O-antigen and its function. The mutants defective in the biosynthesis of LPS 
core encoded by the rfa loci or the O side chain by the rfb loci, are significantly 
attenuated with a LD50 at least 100 times higher than the parental strain in 
chickens subcutaneously infected with Enteritidis [112].

Typhimurium possesses two functional wzz genes responsible for regulating 
the chain length of the O-antigen [113]. One is wzzST encoding a long LPS with 
16–35 O-antigen repeat units and the other fepE gene coding for a very long LPS 
estimated to contain more than 100 repeat units [113]. Either gene product is suf-
ficient for complement resistance and virulence in the mouse model of infection, 
which reflects a degree of functional redundancy of these two wzz genes [113]. 
Double mutation of these two wzz genes resulted in relatively short, random-length 

Virulence genes Location Functions

cirA Chromosome Colicin I receptor

entABCDEF Chromosome Enterobactin synthase

fepABCDEG Chromosome Outer membrane receptor; iron-enterobactin 

transporter binding protein

Fes Chromosome Salmochelin secretion/degradation

FhuABCDE Chromosome Enterobactin/ferric enterobactin esterase

foxA Chromosome Ferrioxamine B receptor precursor

FruR SPI-2 DNA-binding transcriptional regulator

FUR Chromosome Ferric uptake regulator

iroBCDE Chromosome Salmochelin glycosylation, transport and 

processing

MsbA Chromosome Lipid transporter ATP-binding/permease protein

rfaBCDFGHIJKLPQYZ Chromosome LPS core biosynthesis protein; transcriptional 

activator; O-antigen ligase

rfbBDFGHIJKMNOPUVX Chromosome Glucose biosynthesis pathway; O-chain 

glycosyltransferase; O-antigen transporter

rfc Chromosome O-antigen polymerase

STM0719 Chromosome Unknown function

wzxCE Chromosome Colanic acid exporter; putative LPS biosynthesis 

protein

wzzBE Chromosome LPS chain length regulator and biosynthesis 

protein

yibR Chromosome Unknown function

ybdAB Chromosome Enterobactin exporter EntS

Table 4. 
Location and function of the major proteins and virulence determinants contributing to Salmonella 
dissemination.



Microorganisms

14

O-antigen and the mutant displayed enhanced susceptibility to complement-medi-
ated killing and was highly attenuated in mice [113]. The transcription of wzzST 
gene is independently activated by two-component systems of Typhimurium, 
PmrA/PmrB (PmrA, sensor; PmrB, response regulator) and RcsC/YojN/RcsB 
(RcsC, sensor; YojN, intermediate phosphotransfer protein; RcsB, response regula-
tor) [114]. PmrA/PmrB is activated through two pathways: one is directly activated 
through its cognate sensor PmrB in response to Fe3+ and the other is dependent on 
the PhoP/PhoQ two-component system in response to low Mg2+. The RcsC/YojN/
RcsB is activated in the presence of low Mg2+ plus Fe3+ [114]. In addition, mutants 
in a number of genes (rfaG, rfaI, rfaL, rfaQ , rfaP, rfbC, rfbD, rfbJ, rfbM, rfbP, 
yibR) necessary for LPS biosynthesis/assembly had severely impaired movement on 
swimming motility agar [115].

2.4.2 PagC and Rck confer resistance to the complement-mediated bacterial activity

In addition to LPS, two outer membrane proteins, the 18-kDa PagC [116] and 
the 17-kD Rck [117], confer a high level of resistance to the complement-mediated 
bactericidal activity. These two proteins share homology with virulence-associated 
outer membrane protein Ail from Yersinia that blocks formation of the comple-
ment membrane attack complex on the bacterial surface. Similarly, complement 
resistance mediated by Rck is associated with a failure to form fully polymerized 
tubular membrane attack complexes [117]. One strain of Typhimurium which 
contains a single mutation in pagC had a virulence defect and decreased survival in 
cultured murine macrophages and 100-fold reduction in intraperitoneal virulence 
in mice [118].

2.4.3  Siderophores are important for bacterial growth in serum in the extracellular 
phase of salmonellosis

Iron is an essential element for the growth of most bacteria through its involve-
ment in a variety of metabolic and regulatory functions [119]. Studies with differ-
ent iron concentrations in growth media demonstrated an effect on gene expression 
of the iron acquisition systems encoded both on the chromosome and plasmids at 
both transcriptional and translational levels [120]. Siderophores which are bacte-
rial molecules that bind and transport iron are important for bacterial growth in 
serum in the extracellular stage of Salmonella systemic infection. They are not 
required after bacteria reside in SCV where siderophore-independent iron acquisi-
tion systems are sufficient for iron uptake during intracellular stage. Salmonella 
produce two major types of siderophores, high-affinity catecholate consisting of 
salmochelin and enterobactin the latter also known as enterochelin and a low-
affinity hydroxamate known as aerobactin which is expressed under iron-restricted 
conditions [121]. The synthesis, secretion, and uptake of salmochelin requires genes 
clustered at two genetic loci, the fepA gene cluster and iroBCDEN operon. The fepA 
gene cluster includes most ent genes for synthesis and export [122]. The iroBCDEN 
operon encodes gene products for enterobactin glycosylation (IroB, glycosyltrans-
ferase), export (IroC, ABC transporter protein), and utilization (IroD, esterase; 
IroE, hydrolase; IroN, outer membrane receptor) [122]. Mutants deficient in iroB or 
iroC exhibit reduced virulence during systemic infection of mice via intraperitoneal 
route, as indicated by lower bacterial load in liver and a delayed time of death [122]. 
Moreover, the enterobactin metabolite, 2, 3-dihydroxybenzoyl serine (DHBS), can 
also be used by Salmonella as sources of iron, albeit at much lower affinities, by 
recognizing the three catechelate receptors, FepA, IroN and Cir. The three recep-
tors demonstrate a significant degree of functional redundancy. The Typhimurium 
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double mutant ΔfepA iroN were similarly virulent to the parental strain after 
intragastric gavage inoculation of mice, while the triple mutant ΔfepA iroN cir was 
attenuated as indicated by a significantly reduced cecal colonization and no mea-
surable spread to the liver [123, 124].

Furthermore, Salmonella also utilize xenosiderophores as iron sources by 
utilizing the outer membrane receptors, including FhuA, FhuE, and FoxA. For 
example, utilization of ferrioxamines B, E, and G by Typhimurium is dependent on 
the FoxA receptor encoded by the Fur repressible foxA gene. A strain carrying the 
foxA mutation exhibited a significantly reduced ability to colonize rabbit ileal loops 
and was markedly attenuated in mice challenged by either intragastric gavage or 
intravenously route strain compared to the foxA+ parent [125]. The best character-
ized regulator for iron uptake is the iron-dependent repressor Fur that acts together 
with the co[-]repressor ferrous iron (Fe(II)) to regulate genes involved in the iron 
uptake process in response to iron restriction, including fhuA, fhuB, fepA, fes, fepD, 
entB, fur, foxA, hemP, and fhuE [126, 127].

3. Future directions

The advent of next generation sequencing (NGS) has provided an opportunity 
to verify or improve on knowledge gained from in vitro and in vivo analyses of 
Salmonella mutants which were designed for the purpose of understanding gene 
function and mechanism of action. Recently, Rakov et al. [14] carried out bioin-
formatics analysis of 500 Salmonella genomes and identified 70 allelic variants 
virulence factors which were associated with different pathogenesis outcomes, i.e. 
gastrointestinal vs. invasive disease. However, the causative relationship between a 
putative virulence factor and disease outcome using a genomics based tool is yet to 
be attained. To that end, we propose the development of a comprehensive genome 
based tool such as a NGS AmpliSeq assay that can be used to simultaneously 
interrogate the presence and potential expression of over 200 virulence genes of 
Salmonella identified in this communication. The tool can be used to evaluate dif-
ferences in strains and correlate the output with virulence phenotype derived from 
epidemiological or experimental observations which can be developed simultane-
ously or based on historical documentation. The tool could be used in assessing 
the potential risk posed by a strain of Salmonella given the fact that the serovars 
obtained from the environment are often distinct with those involved in human 
diseases. The technology appears suitable for dissecting the complexity associ-
ated with the redundancy and pleiotropic nature of some of the currently known 
virulence genes. In addition, NGS based analysis of virulence genes should provide 
new insights on Salmonella evolution and a better tool for analyzing epidemiologi-
cal data that could translate to a reduction in the burden on human health posed by 
this important foodborne and zoonotic pathogen.

4. Conclusions

This review provides an outline of over 200 identified virulence determinants 
and details of their involvement in the four steps of Salmonella pathogenesis, 
namely: attachment, invasion, intramacrophage survival/replication and systemic 
dissemination. The genetic regulation of only some of the virulence determinants 
have been elucidated in live animal models such as mice and cattle, and this has 
enriched our understanding of the pathogenesis and mechanism of diarrhea 
and systemic disease. The majority of the current evidence on pathogenesis 
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and virulence determinants of NTS was derived from murine model of serovar 
Typhimurium infection with and only a few studies focused on NTS infection in 
humans. For this reason, the relevance of published observations is often called into 
question. Linking clinical, epidemiological and experimental observations on the 
nature and severity of diseases caused by Salmonella organisms with the presence 
of a large number of virulence genes currently may not garner enough predictive 
ability to infer virulence or pathogenetic potential of a strain. Still, the increasing 
availability of a large number of Salmonella genomes in the public databases is 
proving to be a timely resource. Next generation sequencing and the twin subject of 
bioinformatics represent an unprecedented opportunity to verify past observations 
and help improve our understanding of Salmonella virulence towards a coherent 
and comprehensive understanding of the mechanism of Salmonella pathogenesis. 
What is required is a robust laboratory tool that can be used to analyze the large 
number of virulence genes in an isolate using the tools of whole genome sequenc-
ing. We expect that a tool such as an AmpliSeq assay for Salmonella virulence 
could be developed to generate accurate and reliable information that can be fed 
into a quantitative risk assessment framework. This could usher a new era of risk 
management customized for a Salmonella strain involved in an outbreak and should 
translate to impactful outcomes in the areas of improved food safety, evaluation of 
zoonotic diseases and reducing the burden of human salmonellosis.

Acknowledgements

RG is funded by Genome Canada. DO’s research program has received funding 
support from Genome Research and Development Initiative of the Government 
of Canada, Ontario Ministry of Agriculture, Food and Rural Affairs, Canadian 
Security and Science Program of the Department of National Defense and the 
Canadian Food Inspection Agency.

Conflict of interest

The authors declare no conflict of interest.

Acronyms and abbreviations

AMP antimicrobial peptides
invA invasion protein A
LPS lipopolysaccharide
NTS non-typhoidal Salmonella
NGS next generation sequencing
SalFoS Salmonella Foodborne Syst-OMICS database
SPIs Salmonella pathogenicity islands
SIFs Salmonella-induced filaments
SCV Salmonella-containing vacuole



17

Virulence Determinants of Non-typhoidal Salmonellae
DOI: http://dx.doi.org/10.5772/intechopen.88904

Author details

Ruimin Gao1,2, Linru Wang1,3 and Dele Ogunremi1*

1 Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, 
Ontario, Canada

2 Department of Food Science and Agricultural Chemistry, McGill University, 
Sainte Anne de Bellevue, QC, Canada

3 Greater Toronto Area Laboratory, Canadian Food Inspection Agency, 
Scarborough, Ontario, Canada

*Address all correspondence to: dele.ogunremi@canada.ca

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



18

Microorganisms

[1] Majowicz SE, Musto J, Scallan E, 
Angulo FJ, Kirk M, O’Brien SJ, et al. 
International collaboration on Enteric 
disease ‘burden of illness’: The global 
burden of nontyphoidal Salmonella 
gastroenteritis. Clinical Infectious 
Diseases. 2010;50(6):882-889

[2] Thomas MK, Murray R, 
Flockhart L, Pintar K, Pollari F, 
Fazil A, et al. Estimates of the burden 
of foodborne illness in Canada 
for 30 specified pathogens and 
unspecified agents, CIRCA 2006. 
Foodborne Pathogens and Disease. 
2013;10(7):639-648

[3] Thomas MK, Murray R, 
Flockhart L, Pintar K, Fazil A, 
Nesbitt A, et al. Estimates of foodborne 
illness-related hospitalizations and 
deaths in Canada for 30 specified 
pathogens and unspecified agents. 
Foodborne Pathogens and Disease. 
2015;12(10):820-827

[4] Hsu HS. Pathogenesis and immunity 
in murine salmonellosis. Microbiological 
Reviews. 1989;53(4):390-409

[5] Gal-Mor O, Boyle EC, Grassl GA. 
Same species, different diseases: How 
and why typhoidal and non-typhoidal 
Salmonella enterica serovars differ. 
Frontiers in Microbiology. 2014;5:391

[6] Abbott SL, Ni FC, Janda JM. Increase 
in extraintestinal infections caused 
by Salmonella enterica subspecies 
II-IV. Emerging Infectious Diseases. 
2012;18(4):637-639

[7] Uzzau S, Brown DJ, Wallis T, 
Rubino S, Leori G, Bernard S, et al. 
Host adapted serotypes of Salmonella 
enterica. Epidemiology and Infection. 
2000;125(2):229-255

[8] Fang FC, Fierer J. Human infection 
with Salmonella dublin. Medicine 
(Baltimore). 1991;70(3):198-207

[9] Chaudhuri D, Roy Chowdhury A, 
Biswas B, Chakravortty D. Salmonella 
typhimurium infection leads to 
colonization of the mouse brain and is 
not completely cured with antibiotics. 
Frontiers in Microbiology. 2018;9:1632

[10] Gordon MA. Invasive nontyphoidal 
Salmonella disease: Epidemiology, 
pathogenesis and diagnosis. Current 
Opinion in Infectious Diseases. 
2011;24(5):484-489

[11] Robertson J, Yoshida C, 
Kruczkiewicz P, Nadon C, Nichani A, 
Taboada EN, et al. Comprehensive 
assessment of the quality of Salmonella 
whole genome sequence data available 
in public sequence databases using the 
Salmonella in silico Typing Resource 
(SISTR). Microbial Genomics. 2018;4. 
DOI: 10.1099/mgen.0.000151

[12] Branchu P, Bawn M, Kingsley RA. 
Genome variation and molecular 
epidemiology of Salmonella 
enterica serovar Typhimurium 
pathovariants. Infection and Immunity. 
2018;86:e00079-18. DOI: 10.1128/
IAI.00079-18

[13] Emond-Rheault JG, Jeukens J, 
Freschi L, Kukavica-Ibrulj I, 
Boyle B, Dupont MJ, et al. A Syst-
OMICS approach to ensuring food 
safety and reducing the economic 
burden of Salmonellosis. Frontiers in 
Microbiology. 2017;8:996

[14] Rakov AV, Mastriani E, Liu SL, 
Schifferli DM. Association of Salmonella 
virulence factor alleles with intestinal 
and invasive serovars. BMC Genomics. 
2019;20(1):429

[15] Hansmeier N, Miskiewicz K, 
Elpers L, Liss V, Hensel M, 
Sterzenbach T. Functional expression 
of the entire adhesiome of Salmonella 
enterica serotype Typhimurium. 
Scientific Reports. 2017;7(1):10326

References



19

Virulence Determinants of Non-typhoidal Salmonellae
DOI: http://dx.doi.org/10.5772/intechopen.88904

[16] Collinson SK, Liu SL, Clouthier SC, 
Banser PA, Doran JL, Sanderson KE, 
et al. The location of four fimbrin-
encoding genes, agfA, fimA, sefA and 
sefD, on the Salmonella enteritidis 
and/or S. typhimurium XbaI-BlnI 
genomic restriction maps. Gene. 
1996;169(1):75-80

[17] Berne C, Ducret A, Hardy GG, 
Brun YV. Adhesins involved in attachment 
to abiotic surfaces by Gram-negative 
bacteria. Microbiology Spectrum. 
2015;3(4):MB-0018-2015. DOI:10.1128/
microbiolspec.MB-0018-2015

[18] Wagner C, Hensel M. Adhesive 
mechanisms of Salmonella enterica. 
Advances in Experimental Medicine and 
Biology. 2011;715:17-34

[19] Coburn B, Sekirov I, Finlay BB. 
Type III secretion systems and disease. 
Clinical Microbiology Reviews. 
2007;20(4):535-549

[20] Yue M, Rankin SC, Blanchet RT, 
Nulton JD, Edwards RA, 
Schifferli DM. Diversification of 
the Salmonella fimbriae: A model of 
macro- and microevolution. PLoS One. 
2012;7(6):e38596

[21] McClelland M, Sanderson KE, 
Spieth J, Clifton SW, Latreille P, 
Courtney L, et al. Complete genome 
sequence of Salmonella enterica 
serovar Typhimurium LT2. Nature. 
2001;413(6858):852-856

[22] Nuccio SP, Baumler AJ. Evolution of 
the chaperone/usher assembly pathway: 
Fimbrial classification goes Greek. 
Microbiology and Molecular Biology 
Reviews. 2007;71(4):551-575

[23] Fabrega A, Vila J. Salmonella enterica 
serovar Typhimurium skills to succeed 
in the host: Virulence and regulation. 
Clinical Microbiology Reviews. 
2013;26(2):308-341

[24] Zeiner SA, Dwyer BE, Clegg S. 
FimA, FimF, and FimH are necessary 

for assembly of type 1 fimbriae 
on Salmonella enterica serovar 
Typhimurium. Infection and Immunity. 
2012;80(9):3289-3296

[25] Ernst RK, Dombroski DM, 
Merrick JM. Anaerobiosis, type 1 
fimbriae, and growth phase are factors 
that affect invasion of HEp-2 cells by 
Salmonella typhimurium. Infection and 
Immunity. 1990;58(6):2014-2016

[26] Horiuchi S, Inagaki Y, Okamura N, 
Nakaya R, Yamamoto N. Type 1 pili 
enhance the invasion of Salmonella 
braenderup and Salmonella typhimurium 
to HeLa cells. Microbiology and 
Immunology. 1992;36(6):593-602

[27] De Buck J, Van Immerseel F, 
Haesebrouck F, Ducatelle R. Protection 
of laying hens against Salmonella 
enteritidis by immunization with type 
1 fimbriae. Veterinary Microbiology. 
2005;105(2):93-101

[28] Wang KC, Hsu YH, Huang YN, 
Yeh KS. A previously uncharacterized 
gene stm0551 plays a repressive role 
in the regulation of type 1 fimbriae 
in Salmonella enterica serotype 
Typhimurium. BMC Microbiology. 
2012;12:111

[29] Baumler AJ, Tsolis RM, Bowe FA, 
Kusters JG, Hoffmann S, Heffron F. The 
pef fimbrial operon of Salmonella 
typhimurium mediates adhesion to 
murine small intestine and is necessary 
for fluid accumulation in the infant 
mouse. Infection and Immunity. 
1996;64(1):61-68

[30] Nicholson B, Low D. DNA 
methylation-dependent regulation 
of pef expression in Salmonella 
typhimurium. Molecular Microbiology. 
2000;35(4):728-742

[31] Chessa D, Dorsey CW,  
Winter M, Baumler AJ. Binding 
specificity of Salmonella plasmid-
encoded fimbriae assessed by glycomics. 



Microorganisms

20

The Journal of Biological Chemistry. 
2008;283(13):8118-8124

[32] Baumler AJ, Tsolis RM, 
Heffron F. The lpf fimbrial operon 
mediates adhesion of Salmonella 
typhimurium to murine Peyer’s patches. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 1996;93(1):279-283

[33] Ledeboer NA, Frye JG, McClelland M, 
Jones BD. Salmonella enterica serovar 
Typhimurium requires the Lpf, Pef, and 
Tafi fimbriae for biofilm formation on 
HEp-2 tissue culture cells and chicken 
intestinal epithelium. Infection and 
Immunity. 2006;74(6):3156-3169

[34] Weening EH, Barker JD, 
Laarakker MC, Humphries AD, 
Tsolis RM, Baumler AJ. The Salmonella 
enterica serotype Typhimurium lpf, bcf, 
stb, stc, std, and sth fimbrial operons 
are required for intestinal persistence 
in mice. Infection and Immunity. 
2005;73(6):3358-3366

[35] Norris TL, Kingsley RA, Bumler AJ. 
Expression and transcriptional control 
of the Salmonella typhimurium 
Ipf fimbrial operon by phase 
variation. Molecular Microbiology. 
1998;29(1):311-320

[36] Sukupolvi S, Lorenz RG, Gordon JI, 
Bian Z, Pfeifer JD, Normark SJ, et al. 
Expression of thin aggregative fimbriae 
promotes interaction of Salmonella 
typhimurium SR-11 with mouse small 
intestinal epithelial cells. Infection and 
Immunity. 1997;65(12):5320-5325

[37] Collinson SK, Emody L, Muller KH, 
Trust TJ, Kay WW. Purification and 
characterization of thin, aggregative 
fimbriae from Salmonella 
enteritidis. Journal of Bacteriology. 
1991;173(15):4773-4781

[38] Collinson SK, Doig PC, Doran JL, 
Clouthier S, Trust TJ, Kay WW. Thin, 

aggregative fimbriae mediate 
binding of Salmonella enteritidis to 
fibronectin. Journal of Bacteriology. 
1993;175(1):12-18

[39] van der Velden AW, Baumler AJ, 
Tsolis RM, Heffron F. Multiple fimbrial 
adhesins are required for full 
virulence of Salmonella typhimurium 
in mice. Infection and Immunity. 
1998;66(6):2803-2808

[40] Tsolis RM, Townsend SM, Miao EA, 
Miller SI, Ficht TA, Adams LG, et al. 
Identification of a putative Salmonella 
enterica serotype Typhimurium 
host range factor with homology to 
IpaH and YopM by signature-tagged 
mutagenesis. Infection and Immunity. 
1999;67(12):6385-6393

[41] Strindelius L, Folkesson A, 
Normark S, Sjoholm I. Immunogenic 
properties of the Salmonella atypical 
fimbriae in BALB/c mice. Vaccine. 
2004;22(11-12):1448-1456

[42] Zeng L, Zhang L, Wang P, Meng G. 
Structural basis of host recognition and 
biofilm formation by Salmonella Saf 
pili. eLife. 2017;6:e28619. DOI: 10.7554/
eLife.28619

[43] Chessa D, Winter MG, Jakomin M, 
Baumler AJ. Salmonella enterica serotype 
Typhimurium Std fimbriae bind 
terminal alpha(1,2)fucose residues 
in the cecal mucosa. Molecular 
Microbiology. 2009;71(4):864-875

[44] Morrow BJ, Graham JE, Curtiss R 
3rd. Genomic subtractive hybridization 
and selective capture of transcribed 
sequences identify a novel Salmonella 
typhimurium fimbrial operon and 
putative transcriptional regulator that 
are absent from the Salmonella typhi 
genome. Infection and Immunity. 
1999;67(10):5106-5116

[45] Humphries AD, Raffatellu M, 
Winter S, Weening EH, Kingsley RA, 
Droleskey R, et al. The use of flow 



21

Virulence Determinants of Non-typhoidal Salmonellae
DOI: http://dx.doi.org/10.5772/intechopen.88904

cytometry to detect expression of 
subunits encoded by 11 Salmonella 
enterica serotype Typhimurium fimbrial 
operons. Molecular Microbiology. 
2003;48(5):1357-1376

[46] de Louvois J. Salmonella 
contamination of eggs. Lancet. 
1993;342(8867):366-367

[47] Thiagarajan D, Thacker HL, 
Saeed AM. Experimental infection 
of laying hens with Salmonella 
enteritidis strains that express different 
types of fimbriae. Poultry Science. 
1996;75(11):1365-1372

[48] Edwards RA, Schifferli DM, 
Maloy SR. A role for Salmonella 
fimbriae in intraperitoneal infections. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 2000;97(3):1258-1262

[49] Peralta RC, Yokoyama H, 
Ikemori Y, Kuroki M, Kodama Y. Passive 
immunisation against experimental 
salmonellosis in mice by orally 
administered hen egg-yolk antibodies 
specific for 14-kDa fimbriae of 
Salmonella enteritidis. Journal of Medical 
Microbiology. 1994;41(1):29-35

[50] Dorsey CW, Laarakker MC, 
Humphries AD, Weening EH, 
Baumler AJ. Salmonella enterica serotype 
Typhimurium MisL is an intestinal 
colonization factor that binds 
fibronectin. Molecular Microbiology. 
2005;57(1):196-211

[51] Kingsley RA, van Amsterdam K, 
Kramer N, Baumler AJ. The shdA gene 
is restricted to serotypes of Salmonella 
enterica subspecies I and contributes 
to efficient and prolonged fecal 
shedding. Infection and Immunity. 
2000;68(5):2720-2727

[52] Kingsley RA, Abi Ghanem D,  
Puebla-Osorio N, Keestra AM, 
Berghman L, Baumler AJ. Fibronectin 
binding to the Salmonella enterica 

serotype Typhimurium ShdA 
autotransporter protein is inhibited 
by a monoclonal antibody recognizing 
the A3 repeat. Journal of Bacteriology. 
2004;186(15):4931-4939

[53] Kingsley RA, Humphries AD, 
Weening EH, De Zoete MR, Winter S, 
Papaconstantinopoulou A, et al. Molecular 
and phenotypic analysis of the CS54 
island of Salmonella enterica serotype 
Typhimurium: Identification of 
intestinal colonization and persistence 
determinants. Infection and Immunity. 
2003;71(2):629-640

[54] Latasa C, Roux A, Toledo-Arana A, 
Ghigo JM, Gamazo C, Penades JR, 
et al. BapA, a large secreted protein 
required for biofilm formation and 
host colonization of Salmonella 
enterica serovar Enteritidis. Molecular 
Microbiology. 2005;58(5):1322-1339

[55] Gerlach RG, Jackel D, Stecher B, 
Wagner C, Lupas A, Hardt WD, et al. 
Salmonella pathogenicity island 4 
encodes a giant non-fimbrial adhesin 
and the cognate type 1 secretion 
system. Cellular Microbiology. 
2007;9(7):1834-1850

[56] Finlay BB, Ruschkowski S, 
Dedhar S. Cytoskeletal rearrangements 
accompanying Salmonella entry into 
epithelial cells. Journal of Cell Science. 
1991;99(Pt 2):283-296

[57] Francis CL, Ryan TA, Jones BD, 
Smith SJ, Falkow S. Ruffles induced 
by Salmonella and other stimuli direct 
macropinocytosis of bacteria. Nature. 
1993;364(6438):639-642

[58] Garcia-del Portillo F, Finlay BB. 
Salmonella invasion of nonphagocytic 
cells induces formation of 
macropinosomes in the host 
cell. Infection and Immunity. 
1994;62(10):4641-4645

[59] Meresse S, Unsworth KE, 
Habermann A, Griffiths G, Fang F, 



Microorganisms

22

Martinez-Lorenzo MJ, et al. Remodelling 
of the actin cytoskeleton is essential 
for replication of intravacuolar 
Salmonella. Cellular Microbiology. 
2001;3(8):567-577

[60] Garcia-del Portillo F, Zwick MB, 
Leung KY, Finlay BB. Salmonella 
induces the formation of filamentous 
structures containing lysosomal 
membrane glycoproteins in 
epithelial cells. Proceedings of 
the National Academy of Sciences 
of the United States of America. 
1993;90(22):10544-10548

[61] Rajashekar R, Liebl D, Seitz A, 
Hensel M. Dynamic remodeling of the 
endosomal system during formation 
of Salmonella-induced filaments by 
intracellular Salmonella enterica. Traffic. 
2008;9(12):2100-2116

[62] Ohl ME, Miller SI. Salmonella: 
A model for bacterial pathogenesis. 
Annual Review of Medicine. 
2001;52:259-274

[63] Sabbagh SC, Forest CG, Lepage C, 
Leclerc JM, Daigle F. So similar, yet 
so different: Uncovering distinctive 
features in the genomes of Salmonella 
enterica serovars Typhimurium and 
Typhi. FEMS Microbiology Letters. 
2010;305(1):1-13

[64] Salmond GP, Reeves PJ. Membrane 
traffic wardens and protein secretion 
in Gram-negative bacteria. Trends in 
Biochemical Sciences. 1993;18(1):7-12

[65] Nieto PA, Pardo-Roa C, 
Salazar-Echegarai FJ, Tobar HE, 
Coronado-Arrazola I, Riedel CA, 
et al. New insights about excisable 
pathogenicity islands in Salmonella 
and their contribution to 
virulence. Microbes and Infection. 
2016;18(5):302-309

[66] Ginocchio CC, Rahn K, Clarke RC, 
Galan JE. Naturally occurring deletions 
in the centisome 63 pathogenicity 

island of environmental isolates of 
Salmonella spp. Infection and Immunity. 
1997;65(4):1267-1272

[67] Penheiter KL, Mathur N, 
Giles D, Fahlen T, Jones BD. Non-invasive 
Salmonella typhimurium mutants are 
avirulent because of an inability to 
enter and destroy M cells of ileal Peyer’s 
patches. Molecular Microbiology. 
1997;24(4):697-709

[68] Bernal-Bayard J, Ramos-Morales F. 
Salmonella type III secretion effector 
SlrP is an E3 ubiquitin ligase for 
mammalian thioredoxin. The 
Journal of Biological Chemistry. 
2009;284(40):27587-27595

[69] Ellermeier CD, Slauch JM. RtsA 
and RtsB coordinately regulate 
expression of the invasion and flagellar 
genes in Salmonella enterica serovar 
Typhimurium. Journal of Bacteriology. 
2003;185(17):5096-5108

[70] Lim S, Choi J, Kim D, Seo HS. 
Transcriptional analysis of the iagB 
within Salmonella pathogenicity island 
1 (SPI1). Journal of Bacteriology and 
Virology. 2016;46(3):128-134

[71] Bajaj V, Hwang C, Lee CA. hilA is a 
novel ompR/toxR family member that 
activates the expression of Salmonella 
typhimurium invasion genes. Molecular 
Microbiology. 1995;18(4):715-727

[72] Teplitski M, Goodier RI, 
Ahmer BM. Pathways leading from 
BarA/SirA to motility and virulence 
gene expression in Salmonella. Journal 
of Bacteriology. 2003;185(24):7257-7265

[73] Pegues DA, Hantman MJ, Behlau I, 
Miller SI. PhoP/PhoQ transcriptional 
repression of Salmonella typhimurium 
invasion genes: Evidence for a role 
in protein secretion. Molecular 
Microbiology. 1995;17(1):169-181

[74] Winter SE, Thiennimitr P, 
Winter MG, Butler BP, Huseby DL, 



23

Virulence Determinants of Non-typhoidal Salmonellae
DOI: http://dx.doi.org/10.5772/intechopen.88904

Crawford RW, et al. Gut inflammation 
provides a respiratory electron 
acceptor for Salmonella. Nature. 
2010;467(7314):426-429

[75] Shea JE, Hensel M, Gleeson C, 
Holden DW. Identification of a 
virulence locus encoding a second 
type III secretion system in Salmonella 
typhimurium. Proceedings of the 
National Academy of Sciences 
of the United States of America. 
1996;93(6):2593-2597

[76] Cirillo DM, Valdivia RH, 
Monack DM, Falkow S. Macrophage-
dependent induction of the Salmonella 
pathogenicity island 2 type III secretion 
system and its role in intracellular 
survival. Molecular Microbiology. 
1998;30(1):175-188

[77] Hensel M, Shea JE, Waterman SR, 
Mundy R, Nikolaus T, Banks G, et al. 
Genes encoding putative effector 
proteins of the type III secretion system 
of Salmonella pathogenicity island 2 
are required for bacterial virulence and 
proliferation in macrophages. Molecular 
Microbiology. 1998;30(1):163-174

[78] Makishima S, Komoriya K, 
Yamaguchi S, Aizawa SI. Length of 
the flagellar hook and the capacity of 
the type III export apparatus. Science. 
2001;291(5512):2411-2413

[79] Marcus SL, Brumell JH, Pfeifer CG, 
Finlay BB. Salmonella pathogenicity 
islands: Big virulence in small 
packages. Microbes and Infection. 
2000;2(2):145-156

[80] Kuhle V, Hensel M. Cellular 
microbiology of intracellular 
Salmonella enterica: Functions of the 
type III secretion system encoded by 
Salmonella pathogenicity island 2. 
Cellular and Molecular Life Sciences. 
2004;61(22):2812-2826

[81] Blanc-Potard AB, Groisman EA. The 
Salmonella selC locus contains a 
pathogenicity island mediating 

intramacrophage survival. The EMBO 
Journal. 1997;16(17):5376-5385

[82] Moncrief MB, Maguire ME. 
Magnesium and the role of MgtC in 
growth of Salmonella typhimurium. 
Infection and Immunity. 
1998;66(8):3802-3809

[83] Morgan E, Campbell JD, 
Rowe SC, Bispham J, Stevens MP, 
Bowen AJ, et al. Identification of 
host-specific colonization factors 
of Salmonella enterica serovar 
Typhimurium. Molecular Microbiology. 
2004;54(4):994-1010

[84] Kiss T, Morgan E, Nagy G.  
Contribution of SPI-4 genes to the 
virulence of Salmonella enterica. 
FEMS Microbiology Letters. 
2007;275(1):153-159

[85] Morgan E, Bowen AJ, Carnell SC, 
Wallis TS, Stevens MP. SiiE is secreted 
by the Salmonella enterica serovar 
Typhimurium pathogenicity island 
4-encoded secretion system and 
contributes to intestinal colonization 
in cattle. Infection and Immunity. 
2007;75(3):1524-1533

[86] Li X, Bleumink-Pluym NMC, 
Luijkx Y, Wubbolts RW, van 
Putten JPM, Strijbis K. MUC1 is 
a receptor for the Salmonella SiiE 
adhesin that enables apical invasion 
into enterocytes. PLoS Pathogens. 
2019;15(2):e1007566

[87] Wood MW, Jones MA, 
Watson PR, Hedges S, Wallis TS, 
Galyov EE. Identification of a 
pathogenicity island required for 
Salmonella enteropathogenicity. 
Molecular Microbiology. 
1998;29(3):883-891

[88] Galyov EE, Wood MW, Rosqvist R, 
Mullan PB, Watson PR, Hedges S, et al. 
A secreted effector protein of Salmonella 
dublin is translocated into eukaryotic 
cells and mediates inflammation 
and fluid secretion in infected ileal 



Microorganisms

24

mucosa. Molecular Microbiology. 
1997;25(5):903-912

[89] Darwin KH, Robinson LS, 
Miller VL. SigE is a chaperone for 
the Salmonella enterica serovar 
Typhimurium invasion protein 
SigD. Journal of Bacteriology. 
2001;183(4):1452-1454

[90] Fields PI, Swanson RV, 
Haidaris CG, Heffron F. Mutants of 
Salmonella typhimurium that cannot 
survive within the macrophage 
are avirulent. Proceedings of the 
National Academy of Sciences 
of the United States of America. 
1986;83(14):5189-5193

[91] Steele-Mortimer O, Brumell JH, 
Knodler LA, Meresse S, Lopez A, 
Finlay BB. The invasion-associated 
type III secretion system of Salmonella 
enterica serovar Typhimurium is 
necessary for intracellular proliferation 
and vacuole biogenesis in epithelial 
cells. Cellular Microbiology. 
2002;4(1):43-54

[92] Vazquez-Torres A, Xu Y,  
Jones-Carson J, Holden DW, 
Lucia SM, Dinauer MC, et al. Salmonella 
pathogenicity island 2-dependent 
evasion of the phagocyte 
NADPH oxidase. Science. 
2000;287(5458):1655-1658

[93] Gallois A, Klein JR, Allen LA, 
Jones BD, Nauseef WM. Salmonella 
pathogenicity island 2-encoded 
type III secretion system mediates 
exclusion of NADPH oxidase 
assembly from the phagosomal 
membrane. Journal of Immunology. 
2001;166(9):5741-5748

[94] van der Velden AW, Lindgren SW, 
Worley MJ, Heffron F. Salmonella 
pathogenicity island 1-independent 
induction of apoptosis in infected 
macrophages by Salmonella enterica 
serotype Typhimurium. Infection and 
Immunity. 2000;68(10):5702-5709

[95] Catron DM, Sylvester MD, Lange Y, 
Kadekoppala M, Jones BD, Monack DM, 
et al. The Salmonella-containing vacuole 
is a major site of intracellular cholesterol 
accumulation and recruits the GPI-
anchored protein CD55. Cellular 
Microbiology. 2002;4(6):315-328

[96] Waterman SR, Holden DW. 
Functions and effectors of the 
Salmonella pathogenicity island 2 
type III secretion system. Cellular 
Microbiology. 2003;5(8):501-511

[97] Knodler LA, Steele-Mortimer O. 
Taking possession: Biogenesis of the 
Salmonella-containing vacuole. Traffic. 
2003;4(9):587-599

[98] Abrahams GL, Muller P, Hensel M. 
Functional dissection of SseF, a type III 
effector protein involved in positioning 
the Salmonella-containing vacuole. 
Traffic. 2006;7(8):950-965

[99] Freeman JA, Ohl ME, Miller SI. 
The Salmonella enterica serovar 
Typhimurium translocated 
effectors SseJ and SifB are targeted 
to the Salmonella-containing 
vacuole. Infection and Immunity. 
2003;71(1):418-427

[100] Stein MA, Leung KY, 
Zwick M, Garcia-del Portillo F, 
Finlay BB. Identification of a Salmonella 
virulence gene required for formation 
of filamentous structures containing 
lysosomal membrane glycoproteins 
within epithelial cells. Molecular 
Microbiology. 1996;20(1):151-164

[101] Saini S, Rao CV. SprB is the 
molecular link between Salmonella 
pathogenicity island 1 (SPI1) and 
SPI4. Journal of Bacteriology. 
2010;192(9):2459-2462

[102] Lee AK, Detweiler CS, Falkow S. 
OmpR regulates the two-component 
system SsrA-ssrB in Salmonella 
pathogenicity island 2. Journal of 
Bacteriology. 2000;182(3):771-781



25

Virulence Determinants of Non-typhoidal Salmonellae
DOI: http://dx.doi.org/10.5772/intechopen.88904

[103] Deiwick J, Hensel M. Regulation 
of virulence genes by environmental 
signals in Salmonella typhimurium. 
Electrophoresis. 1999;20(4-5):813-817

[104] Deiwick J, Nikolaus T, Erdogan S, 
Hensel M. Environmental regulation of 
Salmonella pathogenicity island 2 gene 
expression. Molecular Microbiology. 
1999;31(6):1759-1773

[105] Raetz CR, Whitfield C. 
Lipopolysaccharide endotoxins. 
Annual Review of Biochemistry. 
2002;71:635-700

[106] Nakano M, Saito K. Chemical 
components in the cell wall of 
Salmonella typhimurium affecting its 
virulence and immunogenicity in mice. 
Nature. 1969;222(5198):1085-1086

[107] Joiner KA, Hammer CH, 
Brown EJ, Frank MM. Studies on the 
mechanism of bacterial resistance to 
complement-mediated killing. II. C8 
and C9 release C5b67 from the surface 
of Salmonella minnesota S218 because 
the terminal complex does not insert 
into the bacterial outer membrane. 
The Journal of Experimental Medicine. 
1982;155(3):809-819

[108] Joiner KA, Hammer CH, Brown EJ, 
Cole RJ, Frank MM. Studies on the 
mechanism of bacterial resistance 
to complement-mediated killing. 
I. Terminal complement components are 
deposited and released from Salmonella 
minnesota S218 without causing bacterial 
death. The Journal of Experimental 
Medicine. 1982;155(3):797-808

[109] Lerouge I, Vanderleyden J. 
O-antigen structural variation: 
Mechanisms and possible roles in 
animal/plant-microbe interactions. 
FEMS Microbiology Reviews. 
2002;26(1):17-47

[110] Wang X, Quinn PJ. 
Lipopolysaccharide: Biosynthetic 
pathway and structure modification. 

Progress in Lipid Research. 
2010;49(2):97-107

[111] Ruiz N, Kahne D, Silhavy TJ. 
Transport of lipopolysaccharide across 
the cell envelope: The long road 
of discovery. Nature Reviews. 
Microbiology. 2009;7(9):677-683

[112] Chang J, Pang E, He H,  
Kwang J. Identification of novel 
attenuated Salmonella enteritidis 
mutants. FEMS Immunology and 
Medical Microbiology. 2008;53(1):26-34

[113] Murray GL, Attridge SR, 
Morona R. Regulation of Salmonella 
typhimurium lipopolysaccharide O 
antigen chain length is required for 
virulence: Identification of FepE as a 
second Wzz. Molecular Microbiology. 
2003;47(5):1395-1406

[114] Delgado MA, Mouslim C, 
Groisman EA. The PmrA/PmrB and 
RcsC/YojN/RcsB systems control 
expression of the Salmonella O-antigen 
chain length determinant. Molecular 
Microbiology. 2006;60(1):39-50

[115] Bogomolnaya LM, Aldrich L, 
Ragoza Y, Talamantes M, Andrews KD, 
McClelland M, et al. Identification of 
novel factors involved in modulating 
motility of Salmonella enterica 
serotype Typhimurium. PLoS One. 
2014;9(11):e111513

[116] Nishio M, Okada N, Miki T, 
Haneda T, Danbara H. Identification 
of the outer-membrane protein PagC 
required for the serum resistance 
phenotype in Salmonella enterica 
serovar Choleraesuis. Microbiology. 
2005;151(Pt 3):863-873

[117] Heffernan EJ, Reed S, 
Hackett J, Fierer J, Roudier C, 
Guiney D. Mechanism of resistance 
to complement-mediated killing of 
bacteria encoded by the Salmonella 
typhimurium virulence plasmid 
gene rck. The Journal of Clinical 
Investigation. 1992;90(3):953-964



Microorganisms

26

[118] Miller SI, Kukral AM, 
Mekalanos JJ. A two-component 
regulatory system (phoP phoQ ) controls 
Salmonella typhimurium virulence. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 1989;86(13):5054-5058

[119] Miethke M, Marahiel MA. 
Siderophore-based iron acquisition 
and pathogen control. Microbiology 
and Molecular Biology Reviews. 
2007;71(3):413-451

[120] Khajanchi BK, Xu J, 
Grim CJ, Ottesen AR, Ramachandran P, 
Foley SL. Global transcriptomic analyses 
of Salmonella enterica in iron-depleted 
and iron-rich growth conditions. BMC 
Genomics. 2019;20(1):490

[121] Fischbach MA, Lin H, Liu DR, 
Walsh CT. How pathogenic bacteria 
evade mammalian sabotage in the battle 
for iron. Nature Chemical Biology. 
2006;2(3):132-138

[122] Crouch ML, Castor M, Karlinsey JE, 
Kalhorn T, Fang FC. Biosynthesis 
and IroC-dependent export of the 
siderophore salmochelin are essential 
for virulence of Salmonella enterica 
serovar Typhimurium. Molecular 
Microbiology. 2008;67(5):971-983

[123] Rabsch W, Methner U, 
Voigt W, Tschape H, Reissbrodt R, 
Williams PH. Role of receptor 
proteins for enterobactin and 
2,3-dihydroxybenzoylserine in virulence 
of Salmonella enterica. Infection and 
Immunity. 2003;71(12):6953-6961

[124] Williams PH, Rabsch W, 
Methner U, Voigt W, Tschape H, 
Reissbrodt R. Catecholate receptor 
proteins in Salmonella enterica: 
Role in virulence and implications 
for vaccine development. Vaccine. 
2006;24(18):3840-3844

[125] Kingsley RA, Reissbrodt R, 
Rabsch W, Ketley JM, Tsolis RM, 

Everest P, et al. Ferrioxamine-mediated 
iron(III) utilization by Salmonella 
enterica. Applied and Environmental 
Microbiology. 1999;65(4):1610-1618

[126] Ernst JF, Bennett RL, Rothfield LI. 
Constitutive expression of the iron-
enterochelin and ferrichrome uptake 
systems in a mutant strain of Salmonella 
typhimurium. Journal of Bacteriology. 
1978;135(3):928-934

[127] Tsolis RM, Baumler AJ, 
Stojiljkovic I, Heffron F. Fur regulon of 
Salmonella typhimurium: Identification 
of new iron-regulated genes. Journal of 
Bacteriology. 1995;177(16):4628-4637


