196 research outputs found

    Migration paths saturations in meta-epidemic systems

    Full text link
    In this paper we consider a simple two-patch model in which a population affected by a disease can freely move. We assume that the capacity of the interconnected paths is limited, and thereby influencing the migration rates. Possible habitat disruptions due to human activities or natural events are accounted for. The demographic assumptions prevent the ecosystem to be wiped out, and the disease remains endemic in both populated patches at a stable equilibrium, but possibly also with an oscillatory behavior in the case of unidirectional migrations. Interestingly, if infected cannot migrate, it is possible that one patch becomes disease-free. This fact could be exploited to keep disease-free at least part of the population

    Cytogenetic and molecular identification of a new wheat-Thinopyrum intermedium addition line with resistance to powdery mildew

    Get PDF
    Thinopyrum intermedium, which has many useful traits, is valuable for wheat breeding. A new wheat-Thinopyrum addition line, SN100109, was developed from the progeny of common wheat cultivar Yannong 15 and Th. intermedium. It was resistant to most races of Blumeria graminis f. sp tritici (Bgt), which caused powdery mildew in wheat, and its reactions were different from the reactions of gene Pm40 and Pm43. Genomic in situ hybridization (GISH) and molecular marker analysis were used to identify the genomic composition of SN100109. GISH results showed that SN100109 was a wheat-Th. intermedium disomic addition line containing one pair of J chromosomes, and the resistance gene was located on the alien additional chromosomes of SN100109. And four molecular markers BE425942, BF482714, Xgdm93 and BV679214 which were assigned to homologous group 2, were specific molecular markers of the additional chromosomes. All the results indicated that SN100109 contained one pair of 2J chromosomes. SN100109 can be used as a novel germplasm source for introducing powdery mildew resistance genes to wheat in breeding programs

    Steamed panax notoginseng and its saponins inhibit the migration and induce the apoptosis of neutrophils in a zebrafish tail-fin amputation model

    Get PDF
    Panax notoginseng (PN) is a Chinese medicinal herb that is traditionally used to treat inflammation and immune-related diseases. Its major active constituents are saponins, the types and levels of which can be changed in the process of steaming. These differences in saponins are causally relevant to the differences in the therapeutic efficacies of raw and steamed PN. In this study, we have prepared the extracts of steamed PN (SPNE) with 70% ethanol and investigated their immunomodulatory effect using a zebrafish tail-fin amputation model. A fingerprint-effect relationship analysis was performed to uncover active constituents of SPNE samples related to the inhibitory effect on neutrophil number. The results showed that SPNE significantly inhibited the neutrophil number at the amputation site of zebrafish larvae. And SPNE extracts steamed at higher temperatures and for longer time periods showed a stronger inhibitory effect. Ginsenosides Rh-1, Rk(3), Rh-4, 20(S)-Rg(3), and 20(R)-Rg(3), of which the levels were increased along with the duration of steaming, were found to be the major active constituents contributing to the neutrophil-inhibiting effect of SPNE. By additionally investigating the number of neutrophils in the entire tail of zebrafish larvae and performing TUNEL assays, we found that the decreased number of neutrophils at the amputation site was due to both the inhibition of their migration and apoptosis-inducing effects of the ginsenosides in SPNE on neutrophils. Among them, Rh-1 and 20(R)-Rg(3) did not affect the number of neutrophils at the entire tail, suggesting that they only inhibit the migration of neutrophils. In contrast, ginsenosides Rk(3), Rh-4, 20(S)-Rg(3), and SPNE did not only inhibit the migration of neutrophils but also promoted neutrophilic cell death. In conclusion, this study sheds light on how SPNE, in particular the ginsenosides it contains, plays a role in immune modulation.Animal science

    Bacterias aisladas con mayor frecuencia y perfil de resistencia antibiótica en cultivos y antibiogramas de muestras procedentes de la unidad de cuidados intensivos del Hospital Regional Docente de Cajamarca 2017-2018

    Get PDF
    El presente trabajo se justificado por: a) El aumento creciente de resistencia a los antibióticos por parte de las bacterias. b) La no existencia de un Mapa Bacteriológico de las infecciones presentes en la UCI de del Hospital Regional Docente Cajamarca, al que los médicos puedan consultar y utilizarlo como herramienta para desarrollar esquemas terapéuticos empíricos e inmediatos. c) Necesidad de llegar a un consenso en lo que respecta a terapia antibiótica, sobre todo considerando el tema de resistencia a los antibióticos.Trabajo de suficiencia profesiona

    Patterned nanostructure in AgCo/Pt/MgO(001) thin film

    Full text link
    The formation of patterned nanostructure in AgCo/Pt/MgO(001) thin film is simulated by a technique of combining molecular dynamics and phase-field theory. The dislocation (strain) network existing in Pt/MgO is used as a template whose pattern is transferred to AgCo phase in spinodal decomposition, resulting in regular arrays of Co islands that are attracted by the dislocations. The influence of various factors, such as component concentration and film thickness, is studied. It is found that the spinodal decomposition of AgCo in this system is mainly characterized by a competition between a surface-directed layer structure and the strain-induced patterned structure, where the patterned Ag-Co structure only dominates in a small range near the interface (less than 10 atomic layers). However, if the interlayer diffusion can be minimized by controlling film growth conditions, it is shown that the patterned structure can be formed throughout the entire film.Comment: 8 pages, 12 figure

    Transcriptomics Research in Chicken

    No full text
    The chicken (Gallus gallus) is an important model organism in genetics, developmental biology, immunology and evolutionary research. Moreover, besides being an important model organism the chicken is also a very important agricultural species and an important source of food (eggs and meat). The availability of the draft chicken genome sequence provided many possibilities to in detail study a variety of genomic changes during evolution using a comparison between chicken and mammals. For example, compared to mammals, the use of a Z/W sex determination system is a special aspect of the avian genome where the female is the heterogametic sex (ZW) and the male is the homogametic (ZZ) sex. A comparison of the genomic sequences of platypus, chicken and human showed that sex chromosomes evolved separately in birds and mammal

    Surface potential distribution in an indentation- pre-cracked BaTiO 3 single crystal

    No full text
    This article presents surface electric potential distributions, measured by Kelvin Probe Force Microscopy, on the (001) surface in an indentation-pre- cracked BaTiO3 single crystal with and without applied electric field. The results show that cracks are higher potential regions in comparison to other regions. The higher surface potential is induced by the crack itself in air at room temperature and an applied in-plane electric field cannot change the major feature of the potential distribution across the crack. © 2011 The American Ceramic Society
    corecore