14 research outputs found

    Dynamic analysis of integrally geared compressors with varying workloads

    Get PDF
    Integrally geared compressors are characterized by compact and high efficiency machines, which are widely used in modern processing industries. As an important part of integrally geared compressors, a geared rotor-bearing system exhibits complicated dynamic behaviors. When running at rated speeds, a coupling system likely produces resonance with an adjusted workload, and a critical load phenomenon occurs. The dynamic coefficients of bearings, axial force and torque, and gear meshing stiffness vary with workload because of the interaction between rotors. In this study, a dynamic model of a geared rotor-bearing system influenced by the dynamic coefficients of bearings, axial force and torque, and gear meshing stiffness is developed. The dynamic responses of the coupling system are calculated and analyzed by using a typical five-shaft integrally geared compressor as an example. The effects of different parameters on the dynamic behaviors of the proposed system are also considered in the discussion. The geared rotor-bearing system is further investigated to examine the failure mechanism of the critical load

    Experimental study on stepless capacity regulation for reciprocating compressor based on novel rotary control valve

    No full text
    A capacity-regulation system based on a novel rotary control valve for reciprocating refrigeration compressor is proposed and designed for the first time. The regulation system is mainly composed of a rotary control valve and an adaptive regulation system. The structure and working principle of the rotary control valve is described in detail, and the control process of the adaptive regulation system for the valve is studied together with the program design. In addition, the parameters for the design and control of the rotary control valve are theoretically determined. To verify the feasibility and effectiveness of the proposed system, a three-cylinder reciprocating compressor was adopted as a test device. Experimental results showed that the technology was able to realize continuous stepless capacity regulation for the compressor within the range of (0)10-100%, and power consumption decreased correspondingly with the load reduction. (C) 2013 Elsevier Ltd and IIR. All rights reserved

    The Dynamic Analysis of Two-Rotor Three-Bearing System

    Get PDF
    A finite element model considering the shear effect and gyroscopic effect is developed to study the linear and nonlinear dynamic behavior of two-rotor three-bearing system named N+1 configuration with rub-impact in this paper. The influence of rotational speed, eccentric condition, and the stiffness of coupling on the dynamic behavior of N+1 configuration and the propagation of motion are discussed in detail. The linear rotordynamic analysis included an evaluation of rotor critical speed and unbalance response. The results show that the critical speed and unbalance response of rotors are sensitive to coupling stiffness in N+1 configuration. In the nonlinear analysis, bifurcation diagram, shaft-center trajectory, amplitude spectrum, and Poincaré map are used to analyze the dynamic behavior of the system. The results of the research transpire that these parameters have the great effects on the dynamic behavior of the system. The response of the system with rub-impact shows abundant nonlinear phenomena. The system will exhibit synchronous periodic motion, multiperiodic motion, quasiperiodic motion, and chaotic motion patterns under rotor-stator rub interaction conditions. The dynamic response is more complicated for flexible coupling and two mass eccentricities than that of system with rigid coupling and one mass eccentricity

    Performance Analysis and Experimental Research of Electromagnetic-Ring Active Balancing Actuator for Hollow Rotors of Machine Tool Spindles

    No full text
    Active balancing actuators are essential components of intelligent machine tool spindles to automatically reduce the unbalance vibration and promote machining accuracy and efficiency. In this study, a novel electromagnetic-ring actuator is introduced, which can be integrated into the hollow rotor of the spindle and compensate the initial mass imbalance through step rotation of two counterweight discs driven by the magnetic field. The working principle of the actuator is described in detail and its performance is analyzed, including balancing ability, balancing accuracy and self-lock capacity. To control the normal operation of the actuator, a phase detection and control program was developed. Finally, to verify the effectiveness of the novel actuator, function experiments and active balancing experiments were carried out. The experimental results show that the novel actuator could reduce the unbalance vibration of the machine tool spindle by 87.5% at 3600 rpm

    Rotordynamic Evaluation of Full Scale Rotor on Tilting Pad Bearings with 0.1 and 0.3 Preload

    No full text
    A system identification method for rotating machinery stability evaluation is investigated based on sine sweep excitation testing with electromagnetic actuator. The traditional MIMO FRF is transformed into dFRF from real number field to complex field with a transformation matrix, eliminating the influence of forward and backward modal overlap and providing higher accuracy to identify rotor’s first forward modal parameters using the rational polynomial method. The modal parameters are acquired for stability estimation. Furthermore, two sets of bearing with preloads of 0.1 and 0.3 under both load-on-pad (LOP) and load-between-pad (LBP) conditions are investigated. The effects of oil inlet pressure (1.0 bar–1.75 bar) and temperature (43°C–51°C) on the stability of rotor are investigated in detail. Results indicate that the stability of rotor will be improved by increasing the oil inlet temperature and pressure. It is found that the rotor is more stable on bearing with 0.1 preload than that of 0.3 preload. Load-on-pad provides more damping to rotor than load-between-pad. The method and outcomes of this paper can provide both theory basis and technology foundation for improving the rotor stability of centrifugal compressors
    corecore