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Abstract: The paper describes the identification and optimization of unbalance parameters in rotor-
bearing systems. Two methods are proposed for the identification of the unbalance characteristics: 
the first is based on modal expansion combined with the use of optimization algorithms, while the 
second relates to the use of modal expansion technique applied to the inverse problem. In this work, 
the modal expansion technique is used to overcome the issue related to the use of a reduced number 
of measuring points. The equivalent unbalance forces can then be estimated by expanding the modal 
displacements into generalized coordinates of the equations of motion of the rotor system. An error 
due to the use of a modal expansion is however inevitable, and to solve the issue we propose the 
adoption of an inverse problem formulation to avoid the computation of the displacements at each 
measurement point. The axial location of the unbalance must be however known in advance, if the 
inverse problem approach is used to identify the unbalance parameters. We therefore propose in this 
work an integrated modal expansion/inverse problem methodology combined with an optimization 
procedure. The technique allows to identify the axial location of the unbalance, its magnitude and 
phase. Simulation and experimental investigations are carried out to verify the validity of the 
proposed methods in a double-disk rotor-bearing system. The results show that identification and 
optimization procedure for the integrated modal expansion/inverse problem approach provides more 
accurate predictions than the ones given by the pure modal expansion method.  
 
Key words: Unbalance identification, modal expansion, inverse problem, optimization, rotor-
bearing system 
 
1. Introduction 

Rotor unbalance is recognized as the major factor leading to malfunction and potential 
catastrophic failure in rotating machines. Dynamic balancing is necessary to reduce the 
vibration of the rotor, and therefore the identification of the unbalance parameters plays an 
important role in this activity.  

Model-based methods are widely used to identify faults in rotor-bearing system. Jalan and 
Mohanty[1, 2] have used the finite elements method (FEM) to model rotor system with unbalance and 
misalignment, whose conditions were successfully identified by using the model-based approach. 
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Bachschmid et al[3] have proposed a method to identify multiple faults by minimizing the difference 
between the measured response and the calculated oneusing frequency-domain least-squares from 
FEM simulations. Deepthikumar et al[4] have described a polynomial curve approach to identify the 
distribution of unbalance in the rotor system based on FEM data. Arias-Montiel[5] has presented an 
on-line estimation schemeof the unbalance forces in an asymmetrical rotor-bearing system with two 
unbalance disks using asymptotic state and force observers. Lees et al.[6] also gave an overview of 
the recent developments in model based identification of rotating machines. 

Dalmazzo Sanches and Pederiva[7] discussed the theoretical and experimental identification of 
the unbalance and the residual shaft bow in a Laval rotor based on mathematical modeling and 
correlation analysis of the rotor responses in the time domain. Pennacchi[8] has proposed a method 
to identify the rotor unbalance parameters by using least square and the M-estimation. Nauclér and 
Söderström[9] have considered the identification of unbalance as a reformulated linear estimation 
procedure using a closed form solution, for which the unknowns of the original non-linearized 
problem are part of a nonlinear regressive model. Shrivastava and Mohanty[10] have proposed a 
model-based method to estimate the unbalance parameters (amplitude and phase angle) in the plane 
of a rotor using a Kalman filter and recursive least square-based input force estimation technique. 
De Oliveira et al.[11] have also described two methodologies based on Fourier series and Legendre 
polynomials to identify the unbalance.  

Sen et al.[12] have presented a detailed analysis of polar and orbit plots of a pristine shaft, and of 
those related to a system made from an unbalance mass attached to rotor. Ocampo et al.[13] have 
proposed a novel methodology based on a two degree of freedom (dof) mathematical simplified 
model of a rotor with different moments of inertia of the transverse section of the shaft to identify 
the angular position of the unbalance force. The methodology required the analysis of the polar plots 
of the rotor response, as well as the information from the vibration response of at least four points 
in the rotor polar plot. Tiwari and Chougale[14] have presented an identification algorithm to  
estimate the dynamic parameters of Active Magnetic Bearings (AMBs) and their residual 
unbalances based on the measured AMB controlling currents and the rotor unbalance responses. Lal 
and Tiwari[15] have formulated an identification algorithm based on a least-squares fit in frequency 
domain to estimate parameters of multiple faults in a turbine generator model based on the use of 
forced response. 

The dynamic displacements of rotor are essential to identify the unbalance parameters. In 
general, the number of measurements is considerably lower than the total number of dofs of the 
rotor-bearing system. A modal technique is normally used to expand the displacements to the full 
dofs of the model. Sudhakar and Sekhar[16] have used the minimization of equivalent loads and the 
vibration response to identify the unbalance within on the context of a modal expansion technique. 
Sekhar[17] has proposed a model-based method for the on-line identification when an  unbalance 
and a crack act simultaneously. Modal expansion methods and reduced basis dynamic expansion 
techniques have been compared in fault identification analyses. Chatzisavvas and Dohnal[18] have 
proposed a robust procedure to identify unbalance by using a modal expansion in the time domain 
and a Least Angle Regression in the frequency domain. 

The equation of motion of  a rotor-bearing system can be used in  an inverse problem for 
unbalance identification by back-substituting the measured unbalance responses. Torres Cedillo and 
Bonello[19] have applied an invasive inverse problem approach for unbalance identification and also 
the balancing, which required some prior knowledge of the structure. The application of the method 
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was related to the high pressure (HP) compressor stage of a rotor in an aero-engine. Menshikov[20] 
have investigated Krylov inverse problem, the early diagnostics of a rotor unbalance and the 
probablistic solutions of an inverse problem, whose steady solutions are obtained by algorithms 
based on Tikhonov regularization. Menshikov[21] considered the identification of the characteristics 
of the unbalance in a rotor with two supports as the basis for the measurements inverse problem. 
Specific assumptions were made to extract the exact solutions and obtain estimates of real unbalance 
characteristics. The development of intelligent identification methodologies provides the possibility 
for fast and accurate unbalance identification in rotor systems. Fioride Castro et al.[22] have used 
meta heuristic search methods to identify the unbalance parameters in different rotary systems.  

This paper focuses on the identification of unbalance parameters in rotor-bearing system based 
on two approaches. At first, a method based on modal expansion and optimization is proposed to 
identify unbalance parameters in a single-disk rotor-bearing system. Another unbalance parameter 
identification and optimization technique for integrated modal expansion and inverse problem 
approach is then proposed to identify unbalance parameters in a double-disk rotor-bearing system. 
Simulations and experiments are carried out to verify the effectiveness of the proposed methods. A 
dynamic balance experiment is also carried out to assess the reliability of the identification results.  

 
2. Model-based rotor unbalance identification theory 
2.1 Equivalent unbalance force identification based on modal expansion 

Here the rotor-bearing systems are modeled using finite elements with the continuous rotor-
bearing system being discretized in lumped masses and supports. The shaft is modeled with beam 
elements with two translational (vertical and horizontal) and two rotational (around the vertical and 
horizontal axes) degrees of freedom per node. The disc is modeled as a rigid mass with gyroscopic 
moments added to the damping matrix. The bearings are simulated as concentrated translational 
springs and viscous damper at the corresponding nodes. The equations of motion for the rotor-
bearing system can be expressed as: 

                (1) 

Where [M] and [K] are the mass and stiffness matrices of undamaged rotor-bearing system. The
 

matrix [D] also includes bearing damping, gyroscopic forces. The vector  consists of the 

initial operating load, while r0(t) is undamaged rotor vibration displacement. 
After adding the unbalance to the undamaged (pristine) rotor system, the motion equation of the 

rotor system can be expressed as: 

            (2) 

Where  represents the theoretical equivalent loads generated in the system by the 

fault, and r(t) is the generalized coordinates vector of the damaged rotor. The residual vibrations 
due to fault are equal to differences of the generalized coordinates between the damaged and pristine 
configurations: 

,
 

,
 

           (3) 

The rotor system can be regarded as a linear, but at the same time it is assumed that the bearing 
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stiffness and damping remain constant before and after the unbalance excitation at the same speed[23]. 
Only the effect of the unbalance force is therefore considered here. Subtracting Eq.(1) from Eq. (2), 
and substituting in Eq. (3) we obtain: 

              (4) 

The introduction of an unbalance fault leads to the generation of an equivalent unbalance force. 
The minimization of the difference of the equivalent loads generated computed from the theoretical 
fault model allows the identification of the fault parameters. The FE model of the rotor bearing 
system has four dofs per node. The actual measurements in a single point can only be carried out 
for the translational dofs, and this is not sufficient to identify the unbalance. A modal expansion 
technique is therefore used to obtain the full dofs responses. The equations of modal expansion are 
expressed as: 

                           (5) 

These measured residual vibrations are related to residual vibrations at full dof 

by the measurement matrix [A] padded with zeros, except in those rows or columns 

corresponding to the measurement points. The undamaged (pristine) model matrix  is used to 
extend the displacements of the measuring points. The full residual vibrations are estimated as: 

                 (6) 

The equivalent loads due to the unbalance are obtained as:  

               (7) 

The unbalance force due to a single unbalance with eccentricity u at a phase angle of  acting 

on the rotor system at a speed of  is replaced by equivalent forces along the horizontal and 
vertical directions. The equivalent unbalance forces related to at all other nodes are ignored. The 
mathematical model of the unbalance forces can be expressed as in time domain as:  

                     (8) 

The objective function for the optimization is established by minimizing the difference between 
the theoretical unbalance force and the estimated equivalent one. Specific optimization methods are 
then used to minimize the objective function and identify the unbalance parameters. 

 
2.2 Rotor unbalance parameters identification method for integrated modal expansion and 
inverse problem 

Standard inverse problem techniques need the prior knowledge of the position of the unbalance.  
We propose here an unbalance identification method for integrated modal expansion applied to the 
inverse problem to overcome this issue. The modal expansion is used to here first to identify the 
location of unbalance, followed by the application of an inverse problem with an optimization 
algorithm to identify unbalance parameters. The system of equation of motion equation of the rotor 
has the same form as Eq.(1): 
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                  (9) 

In general, the steady-state response of the rotor can be expressed as a complex form using 

Euler's formula ( ,in which R0 is the amplitude of the vibration displacement, and R 

is the steady-state displacement at the speed of operation). Substituting R into Eq.(9) solves the 
amplitude of the rotor vibration displacement R0: 

                  (10) 

In Eq.(10), C and G are the damping matrix and gyroscopic matrix respectively. Assuming

, the expression of R0 can be reduced as:  

                                (11) 

Let N be total number of dofs in the model of the rotor-bearing system. the matrix H will then 
have dimensions equal to 4N×4N, which makes the calculation of R0 not appealing from a 
computational perspective.  We therefore establish a matrix B that extracts the rows corresponding 
to the measuring points, and the columns where the unbalances are located. In addition, the 
unbalance forces values are contained in by the vector Q. R0 will therefore obey the following 
transformation:  

                                (12) 

Substituting the measured vibration into the Eq.(12),the unbalance forces can be estimated by 

                             (13) 

 
2.3 Optimization for unbalance parameters 

The theoretical load is a function of the unbalance parameters, and the estimated unbalance 
forces can be expressed by the measured displacements. The objective function for the minimization 
problem can be expressed as follows:  

                         (14) 

In Eq.(14),  is the theoretical unbalance force, and  is the estimated 

equivalent unbalance force. These vectors can be converted into complex exponential form:   

                     (15) 

                      (16) 

The vector  contains information about the magnitude  and phase angle α of 

unbalance force. To reduce the number of variables that are independent of the unbalance parameters, 
time is eliminated by dividing Eq.(15) with Eq.(16) and transforming the result in a natural 
logarithm form, so that Eq.(14) becomes: 
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                             (17) 

Unbalance masses are distributed on different disks in double-disk rotor-bearing system. The 
objective function is therefore established as:  

     (18) 

In Eq.(18), , , ,  are unbalance magnitude and phase in the double-disk rotor-

bearing system, while , , ,  are equivalent unbalance force amplitudes and phases 

estimated by the application of the inverse problem. To identify the unbalance parameters, different 
optimization algorithms are used to optimize the objective function (Eq.(17), Eq.(18)). The 
Antlion[24] (ALO), Simulated annealing[25] (SA) and fly fruit algorithm[26] (FOA) are used in this 
work, and they are codes into a Matlab(R2014a) platform.  

 
3. Description and modeling of the test rig 
3.1 Description of the test rig 

Simulations and experiments are carried out by reproducing the test rig shown in Fig.1. The 
single-disk and double-disk rotors are driven by a DC motor rated at 0.3KW with a maximum speed 
reaches 12000rev/min. A bellows coupling is used to connect the motor to the shaft. The 
photoelectric sensor, fixed on the right bearing support records the rotor speed by receiving the 
reflected pulse. The dynamic displacements of the rotor are measured by three eddy current 
displacement proximity probes. The main parameters of the test rig are shown in Table 1.  

  
(a)single-disk rotor-bearing system            (b)double-disk rotor-bearing system   

Fig. 1 Test rig of rotor-bearing system  
Table 1 Parameters of test rig 

Shaft parameters 
Diameter 10mm 
Length 500mm 
Density 7810Kg/m3 

Modulus of elasticity 2.08x1011N/m2 
Poisson ratio 0.3 

Disc parameters 
Internal diameter 10mm 
External diameter 78mm 

Thickness 15mm 
Mass 0.5Kg 

2

min ln i( )u
F

j aW
+ -

( )1 1 2 2i( + ) i( + ) i( + ) i( + )2 2
1 1 2 2min t t t tu e Fe u e F eW j W g W j W gW W- + -

1u 1j 2u 2j

1F 1g 2F 2g
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Bearing parameters 
1# Bearing journal diameter 

Clearance 
Width 

24mm 
0.05mm 
20mm 

2#Bearing journal diameter 
Clearance 

Width 

10mm 
0.01mm 
15mm 

Lubricating oil number 32 
 

3.2 Modeling and analysis of the test rig 
Fig.2 shows the FE models of a single-disk and a double-disk rotor-bearing system. The shaft is 

discretized into finite beam elements with two translational and two rotational dofs per node 
according to Timoshenko beam theory. The shafts are discretized into 12 2-nodes elements for the 
single-disk rotor, and 17 similar beam elements for the double-disk rotor-bearing system. Disc and 
bearings are modeled as concentrated parameters according to paragraph 2.1.  

The Bode diagrams of the two rotor-bearing systems are shown in Fig. 3. The first critical speed 
is 2800rev/min for the single-disk rotor-bearing system and 2550rev/min in the double-disk one. 
The measured first critical speeds of the two rotor-bearing systems are 2820rev/min and 
2580rev/min respectively. The relative errors are 0.7% and 1.2%, and demonstrate the accuracy of 
the model. The first three modes of the rotor-bearing system with natural frequencies are shown in 
Fig.4. In this work, the first mode in the single-disk and the second mode in the double-disk rotor 
bearing system are used for modal expansion, respectively. 

 
(a)  Single-disk rotor-bearing system 

 
(b) Double-disk rotor-bearing system 

Fig. 2 Model of the test rig 
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(a)Single-disk rotor-bearing system       (b) Double-disk rotor-bearing system 

Fig. 3 Steady-state response of the rotor system 

  
 (a) Single-disk rotor-bearing system          (b) Double-disk rotor-bearing system 

Fig.4 Mode shapes of the rotor-bearing system related to the first three natural frequencies 
 

4. Numerical simulation 
4.1 Identification of the unbalance parameters in the single-disk rotor-bearing system 

The disk has 16 holes placed at a radial distance of 30.0mm (Fig.5). The unbalance masses added 
to the disk are shown in Table 2. The unbalance forces and the vibration responses of the system are 
calculated at 6000 rev/min.  

  
Fig.5 Front view of the disc 

Table 2 Unbalance induced in the disc 
Unbalance type Unbalance magnitude(g mm) Unbalance phase(degree) 

1 29.4 45 
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2 39.3 180 
3 45.0 135 
4 49.2 225 

The displacement of the reduced number of measuring points can be extended to all dofs by 
modal expansion to estimate the equivalent unbalance forces by using Eq.(7)). Taking the 45g mm 
at 135 degree case as an example, the equivalent vertical unbalance forces are estimated by modal 
expansion of 3dofs and all 52 dofs (Fig.6). The carpet plot shows that the magnitude of the 
equivalent vertical unbalance force calculated expanding 3 dofs is 14.2% smaller than the force 
calculated when all the 52 dofs are considered. The location of the unbalance is however clearly 
identified at node 7, which corresponds to the position of the disk. The unbalance parameters are 
identified by using different optimization algorithms. It is apparent that the FOA performs better the 
identification of the magnitude of unbalance (Table 3). The iterative process of the three algorithms 
is shown in Fig 7. ALO makes use of the lowest number of iterations, with the SA requiring the 
highest number of steps to identify the unbalance.  FOA also provides the best performance both 
in terms of magnitude and phase angle % difference.  

 
(a) 3dof                                (b) 52dof 

Fig.6 Equivalent vertical forces estimated in the system of an unbalance 45 g mm at 135degree in 
case of measured vibrations at (a) 3dof and (b) 52dof 

Table 3 Results of unbalance identification 

Unbalance 

Unbalance magnitude 
(g mm) 

Magnitude error (%) Unbalance phase (degree) Phase error (%) 

ALO SA FOA ALO SA FOA ALO SA FOA ALO SA FOA 

1 25.05 25.88 26.54 -14.80 -11.97 -9.73 45.27 45.00 45.07 0.60 0.00 0.16 

2 33.48 33.58 36.74 -14.81 -14.55 -6.51 180.25 180.31 180.15 -0.36 0.17 0.08 

3 38.34 39.07 42.00 -14.80 -13.18 -6.67 135.27 134.94 135.21 0.20 -0.04 0.16 

4 41.92 42.25 44.24 -14.80 -14.13 -10.08 225.25 225.20 226.88 0.11 0.09 0.84 
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(a)29.5g mm at 45 degree                (b)39.3 g mm at 180 degree 

 
(c) 45g mm at 135 degree               (d)49.2 g mm at 225 degree 

Fig.7 Iterative process of different unbalance optimization algorithms 
 

4.2 Identification of the unbalance parameters in a double-disk rotor-bearing system 
To overcome the inherent limitations of inverse problem, the modal expansion is used to identify 

the location of unbalance. This integrated modal expansion/inverse problem approach is used to 
identify unbalance parameters in a double-disk rotor-bearing system. The distribution of the 
unbalance parameters is tabulated in Table 4. The equivalent unbalance forces at each node are 
calculated by modal expansion(Fig.8). The largest unbalance forces are located at node 7 and 11, 
i.e. the locations of the unbalance are correctly identified by using the modal expansion technique. 
Substituting those unbalance forces into the objective function (Eq.(18)) can then perform the 
optimization process. In this case, the FOA fails to identify the unbalance due to the presence of a 
local minimum. Only ALO and SA are used to identify the unbalance in this double-disk rotor-
bearing system. 

The results of the unbalance parameters identified through modal expansion with the ALO and 
the SA algorithm are shown in Table 5, while the ones related to the integrated modal 
expansion/inverse problem approach are tabulated in Table 6. It is quite evident that the unbalance 
parameters identified by using the integrated approach are more accurate. The iterative process of 
the unbalance identification is illustrated in Fig.9, showing that the ALO algorithm requires a lower 
number of iterations. 

Table 4 Distribution of the unbalance in the double-disk system  
Disk unbalance(g mm) Phase(degree) 

1 69.9 180 
2 49.2 135 
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Fig.8 Unbalance forces of at each nodeof the double-disk rotor-bearing system 
Table 5 Identified results of unbalance by modal expansion with optimization algorithms 

Unbalance 
disk 

Unbalance 
magnitude(g mm) 

Magnitude error 
(%) 

Unbalance phase 
(degree) 

Phase error (%) 

ALO SA ALO SA ALO SA ALO SA 
1 48.65 48.54 -30.40 -30.56 157.07 157.05 -12.74 -12.75 
2 50.22 50.21 2.07 2.05 160.77 161.19 19.09 19.40 

Table 6 Identified results of the unbalance by combing the modal expansion and the inverse 
problem approach with the optimization algorithms 

Unbalance 
disk 

Unbalance 
magnitude(g mm) 

Magnitude error 
(%) 

Unbalance phase 
(degree) 

Phase error (%) 

ALO SA ALO SA ALO SA ALO SA 
1 70.19 70.60 0.41 1.00 179.32 179.51 -0.38 -0.27 
2 50.25 50.48 2.13 2.60 136.51 136.41 1.12 1.04 

  

            (a) modal expansion         (b) integrated modal expansion and inverse problem  
Fig.9 Iterative process of the unbalance identification in double-disk rotor-bearing system 

 
5. Experimental unbalance identification 
5.1 Identification of the unbalance in a single-disk rotor-bearing system 

The single-disk rotor-bearing system shown in Fig.1(a) is used for the experimental unbalance 
identification. The vibration responses of the rotor-bearing system at 6000rev/min are firstly 
measured without adding any unbalance masses (Fig.10). The unbalance distribution shown in Table 
2 is then applied to the disc, and the corresponding vibration responses are measured (Fig.11).  The 
equivalent unbalance force estimated by modal expansion is plotted in a carpet plot shown in Fig.12, 
which demonstrates the accuracy of the identification of location of unbalance by the modal 
expansion technique. The results of the unbalance identification through the modal expansion with 
the optimization algorithms are tabulated in Table 7. The errors of the unbalance parameters 
identified by the FOA method are the lowest, while the ALO-derived ones show the largest 
discrepancies. The iterative processes of the unbalance identification are shown in Fig.13, which 
indicates the ALO algorithm requires the lowest number of iterations, and the SA  the highest. 
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Fig.10 Initial vibration response and orbit without unbalance at 6000rev/min 

   
(a)Vibration response and orbit with 29.4g mm at 45 degree 

 

(b) Vibration response and orbit with 39.3g mm at 180 degree 

  
(c) Vibration response and orbit with 45g mm at 135 degree 
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(d) Vibration response and orbit with 49.2g mm at 225 degree 

Fig.11 Vibration response and orbit with different unbalance at 6000rev/min 

 
(a)29.4g mm at 45 degree                   (b) 39.3g mm at 180 degree 

5 

 
(c) 45g mm at135 degree                   (d) 49.2g mm at 225 degree 

Fig.12 Equivalent unbalance force calculated by modal expansion  

Table 7 Results of unbalance identification by modal expansion with different algorithms 

Unbalance 

Unbalance magnitude 
(g mm) 

Magnitude error 
(%) 

Unbalance phase 
(degree) 

Phase error (%) 

ALO SA FOA ALO SA FOA ALO SA FOA ALO SA FOA 

1 23.08 23.24 24.57 -21.50 -20.95 -16.43 49.79 48.87 45.74 10.64 8.60 1.64 

2 36.40 37.19 39.12 -7.38 -5.37 -0.46 187.54 186.50 185.30 4.19 3.61 2.94 

3 41.71 43.59 44.51 -7.31 -3.13 -1.09 153.33 152.94 151.12 13.58 13.29 11.94 

4 48.50 49.03 49.27 -1.42 -0.35 0.14 220.61 221.17 222.39 -1.95 -1.70 -1.16 
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(a) 29.4g mm at 45 degree                 (b) 39.3g mm at 180 degree 

 

(c) 45g mm at135 degree                    (d) 49.2g mm at 225 degree 
Fig.13 Iterative process of unbalance identification by modal expansion with optimization algorithm 

 
5.2 Identification of the unbalance in a double-disk rotor-bearing system 

The double-disk rotor-bearing system of Fig.1(b) is used for this particular  experiment. The 
unbalance masses of Table 4 are now introduced in the two disks. The vibration responses (including 
the pristine and the fault response) are measured at 6000rev/min (Fig.14). Equivalent unbalance 
forces are estimated by modal expansion (Fig.15). The identified unbalances through modal 
expansion with optimization are tabulated in Table 8. The unbalance parameters identified by 
integrated modal expansion/inverse problem with different optimization algorithms are shown in 
Table 9. 
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(b)Unbalance vibration response and orbit with unbalance 
Fig.14 Measured vibration response at 6000rev/min 

 
Fig.15 Equivalent unbalance forces estimated by modal expansion in the double-disk system 
Table 8 Identified results of the unbalance by combing modal expansion with optimization 

algorithms 

Unbalance 
disk 

Unbalance 
magnitude(g mm) 

Magnitude error 
(%) 

Unbalance 
phase (degree) 

Phase error (%) 

ALO SA ALO SA ALO SA ALO SA 
1 44.23 44.16 -36.72 -36.82 141.36 141.43 -21.47 -

24.43 
2 44.25 44.09 -10.06 -10.39 141.36 141.43 4.71 4.76 

Table 9 Identified results of the unbalance by the integrated modal expansion/inverse problem 
approach with optimization algorithms 

Unbalance 
disk 

Unbalance 
magnitude (g 

mm) 

Magnitude error 
(%) 

Unbalance 
phase (degree) 

Phase error (%) 

ALO SA ALO SA ALO SA ALO SA 
1 78.30 78.16 12.02 11.82 184.20 184.60 2.33 2.56 
2 

52.15 53.00 6.00 7.72 113.03 112.19 -16.27 
-

16.90 
From Fig.15, one can easily not that the amplitudes of the equivalent unbalance at nodes 7 and 

11 are significantly higher than in other nodes, and this demonstrates the accuracy of the location 
identification by  using modal expansion technique. By comparing the unbalance identification 
results from Tables 8 and 9 it is clearly that the identification performed by using the integrated 
modal expansion/inverse problem with optimization provides the most accurate results. The ALO 
also provides the lower number of iteration steps to identify the parameters (Fig.16).  
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(a) modal expansion        (b) integrated modal expansion and inverse problem 

Fig.16 Iterative process for unbalance identification in double disk rotor system 
 

5.3 Comparison of the response before and after balancing 
The unbalance parameters have been identified in a single-disk and a double-disk rotor-bearing 

system, each made by a rotor balanced at 6000rev/min. The comparison of the experimental 
vibration amplitudes before and after balancing is shown in Figs. 17 and 18. It is quite clear that the 
vibration amplitudes have significantly decreased after balancing in the two experimental cases. For 
the single-disk system, the vibration amplitudes have reduced by 43%, 63%, 67% and 62% after 
balancing; the same responses have decreased by 40% (horizontal) and 53% (vertical) in the double-
disk rotor-bearing system case. These results give further evidence that the identification methods 
proposed in this work are valid.  

  

(a)29.4 g mm at 45 degree                 (b)39.3 g mm at180 degree 

 
(c)45g mm at 135 degree                  (d)49.2 g mm at 225 degree 

Fig.17 Vibration amplitudes along the vertical direction before and after balancing in the single-
disk rotor-bearing system 
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(a)Horizontal vibration                      (b)Vertical vibration 

Fig.18 Vibration amplitude before and after balancing in the double-disk rotor-bearing system 
 

 
6 Conclusions 

This paper has presented a new methodology to simulate and predict unbalances in rotor-bearing 
systems. A method that combines modal expansion and optimization algorithms is here proposed to 
identify the unbalance in a single-disk rotor- bearing system. Both simulations and experimental 
results demonstrate the effectiveness of the proposed identification method, which not only permits 
to detect the location of the unbalance, but also its defining parameters. Another method that 
involves an integrated modal expansion /inverse problem approach combined with optimization is 
also proposed, this time to identify the unbalance parameters in a double-disk rotor-bearing system. 
This method overcomes the limitation of the state-of-the-art inverse problem applications in the 
field, which rely upon the prior knowledge of the axial location of the unbalance. Simulation and 
experimental results demonstrate the validity of these methods. Moreover, the comparison between 
the method combining modal expansion and optimization, and the one with the integrated modal 
expansion/inverse problem/optimization shows that the results identified using the latter 
methodology are more accurate in the case of a double-disk rotor-bearing system. The dynamic 
balance experiments also demonstrate the validity of the proposed methods, which could provide 
effective aid to the rotordynamics designer. 

In practical terms, the methods here proposed could be successfully used in rotor fault detection 
techniques, especially in view of the absence of the requirement of prior knowledge of the type of 
unbalance. This feature is particularly appealing in the case of complex and multiple shaft 
configurations typical of modern aeroengines or high-speed rotating machines. Although we have 
used in this work meta-heuristic algorithms, other more standard and industrially mainstream 
optimization techniques could also be used in case. The main disadvantages of the techniques here 
presented are the complex calculations involved in the methods, and the difficulty to obtain in some 
cases a very accurate modal representation of the pristine (undamaged and balanced) rotor-bearing 
system. Once these aspects are however taken into account in future developments, these modal 
expansion methods could provide a useful tool to the rotordynamics analyst to increase the reliability 
and operational readiness of rotating machines elements. 
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