57 research outputs found

    Effect of “Xiaoke Tongbi granule” on the proliferation, migration and tubule-forming ability of rat endothelial progenitor cells under high glucose conditions

    Get PDF
    Purpose: To investigate the effect of Xiaoke Tongbi granule (XTG) on the proliferation, migration and tubule-forming ability of endothelial progenitor cells (EPCs) of rats under high glucose conditions. Methods: Six specific pathogen-free (SPF) and twenty-four healthy rats (mean weight = 200 ± 20 g) were used in this study. Twenty-four (24) healthy rats were treated with graded concentrations of XTG (0.75 – 2.25 g/mL) for 7 days, and were thereafter euthanized to obtain serum which was later used to treat EPCs isolated from bone marrow of SPF rats. The EPCs were seeded in culture plates pre-coated with human fibronectin, and cultured at 37 °C for 72 h in a humidified atmosphere of 5 % CO2 and 95 % air. Cell viability and apoptosis were assessed using 3 (4,5 dimethyl thiazol 2 yl) 2,5 diphenyl 2H tetrazolium bromide (MTT), and flow cytometric assays, respectively. The morphology of isolated EPCs was assessed by immunofluorescence. Results: The isolated EPCs exhibited normal morphology, and were CD34-positive. Proliferation and migration of EPCs, and number of tubular structures formed were significantly suppressed under high glucose conditions, but were significantly and concentration-dependently promoted by XTG treatment (p < 0.05). Treatment with XTG also significantly improved the morphology of isolated EPCs (p < 0.05). Apoptosis was significantly promoted by high glucose conditions, but was significantly and concentration-dependently reduced by XTG treatment (p < 0.05). The incidence of tubule formation in high glucose group was 0.63 %, but was progressively increased from 1.37 to 1.52 % after treatment with graded concentrations of XTG. Conclusion: These results indicate that XTG reverses the effect of high glucose environment on EPC proliferation, migration and tubule-forming ability

    Genomic approaches to research in pulmonary hypertension

    Get PDF
    Genomics, or the study of genes and their function, is a burgeoning field with many new technologies. In the present review, we explore the application of genomic approaches to the study of pulmonary hypertension (PH). Candidate genes, important to the pathobiology of the disease, have been investigated. Rodent models enable the manipulation of selected genes, either by transgenesis or targeted disruption. Mutational analysis of genes in the transforming growth factor-β family have proven pivotal in both familial and sporadic forms of primary PH. Finally, microarray gene expression analysis is a robust molecular tool to aid in delineating the pathobiology of this disease

    Impact of Cigarette Smoke Exposure on Innate Immunity: A Caenorhabditis elegans Model

    Get PDF
    BACKGROUND: Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and lung cancer. Respiratory bacterial infections have been shown to be involved in the development of COPD along with impaired airway innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo impact of cigarette smoke (CS) exclusively on host innate defense mechanisms, we took advantage of Caenorhabditis elegans (C. elegans), which has an innate immune system but lacks adaptive immune function. Pseudomonas aeruginosa (PA) clearance from intestines of C. elegans was dampened by CS. Microarray analysis identified 6 candidate genes with a 2-fold or greater reduction after CS exposure, that have a human orthologue, and that may participate in innate immunity. To confirm a role of CS-down-regulated genes in the innate immune response to PA, RNA interference (RNAi) by feeding was carried out in C. elegans to inhibit the gene of interest, followed by PA infection to determine if the gene affected innate immunity. Inhibition of lbp-7, which encodes a lipid binding protein, resulted in increased levels of intestinal PA. Primary human bronchial epithelial cells were shown to express mRNA of human Fatty Acid Binding Protein 5 (FABP-5), the human orthologue of lpb-7. Interestingly, FABP-5 mRNA levels from human smokers with COPD were significantly lower (p = 0.036) than those from smokers without COPD. Furthermore, FABP-5 mRNA levels were up-regulated (7-fold) after bacterial (i.e., Mycoplasma pneumoniae) infection in primary human bronchial epithelial cell culture (air-liquid interface culture). CONCLUSIONS: Our results suggest that the C. elegans model offers a novel in vivo approach to specifically study innate immune deficiencies resulting from exposure to cigarette smoke, and that results from the nematode may provide insight into human airway epithelial cell biology and cigarette smoke exposure

    Innate Immune Response of Human Alveolar Macrophages during Influenza A Infection

    Get PDF
    Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1β activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo

    The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review

    No full text
    Nrf2 is a major transcription factor that significantly regulates—directly or indirectly—more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of “one-drug, one-target”

    Global Transcriptional Analysis of Yeast Cell Death Induced by Mutation of Sister Chromatid Cohesin

    Get PDF
    Cohesin is a protein complex that regulates sister chromatid cohesin during cell division. Malfunction in chromatid cohesin results in chromosome missegregation and aneuploidy. Here, we report that mutations of MCD1 and PDS5, two major components of cohesin in budding yeast, cause apoptotic cell death, which is characterized by externalization of phosphatidylserine at cytoplasmic membrane, chromatin condensation and fragmentation, and ROS production. Microarray analysis suggests that the cell death caused by mutation of MCD1 or PDS5 is due to the internal stress response, contrasting to the environmental or external stress response induced by external stimuli, such as hydrogen peroxide. A common feature shared by the internal stress response and external stress response is the response to stimulus, including response to DNA damage, mitochondria functions, and oxidative stress, which play an important role in yeast apoptotic cell death

    Phytochemical Combination PB125 Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury

    No full text
    Bioactive phytochemicals in Rosmarinus officinalis, Withania somnifera, and Sophora japonica have a long history of human use to promote health. In this study we examined the cellular effects of a combination of extracts from these plant sources based on specified levels of their carnosol/carnosic acid, withaferin A, and luteolin levels, respectively. Individually, these bioactive compounds have previously been shown to activate the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, which binds to the antioxidant response element (ARE) and regulates the expression of a wide variety of cytoprotective genes. We found that combinations of these three plant extracts act synergistically to activate the Nrf2 pathway, and we identified an optimized combination of the three agents which we named PB125 for use as a dietary supplement. Using microarray, quantitative reverse transcription-PCR, and RNA-seq technologies, we examined the gene expression induced by PB125 in HepG2 (hepatocellular carcinoma) cells, including canonical Nrf2-regulated genes, noncanonical Nrf2-regulated genes, and genes which appear to be regulated by non-Nrf2 mechanisms. Ingenuity Pathway Analysis identified Nrf2 as the primary pathway for gene expression changes by PB125. Pretreatment with PB125 protected cultured HepG2 cells against an oxidative stress challenge caused by cumene hydroperoxide exposure, by both cell viability and cell injury measurements. In summary, PB125 is a phytochemical dietary supplement comprised of extracts of three ingredients, Rosmarinus officinalis, Withania somnifera, and Sophora japonica, with specified levels of carnosol/carnosic acid, withaferin A, and luteolin, respectively. Each ingredient contributes to the activation of the Nrf2 pathway in unique ways, which leads to upregulation of cytoprotective genes and protection of cells against oxidative stress and supports the use of PB125 as a dietary supplement to promote healthy aging
    • …
    corecore