20 research outputs found

    The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1

    Get PDF
    The post-translational modification poly(ADPribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between noncovalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional Cterminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non–covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53–PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53–DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome

    Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Implications for Risk Prediction

    Get PDF
    The known breast cancer (BC) susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1,LSP1 and 2q35 confer increased risks of BC for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of three additional SNPs, rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11 and rs10941679 at 5p12 and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased BC risk for BRCA2 carriers (per-allele Hazard Ratio (HR)=1.10, 95%CI:1.03-1.18, p=0.006 and HR=1.09, 95%CI:1.01-1.19, p=0.03, respectively). Neither SNP was associated with BC risk for BRCA1 carriers and rs6504950 was not associated with BC for either BRCA1 or BRCA2 carriers. Of the nine polymorphisms investigated, seven were associated with BC for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, p-values:7×10−11-0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (p=0.0049, 0.03 respectively). All risk associated polymorphisms appear to interact multiplicatively on BC risk for mutation carriers. Based on the joint genotype distribution of the seven risk associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e. between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing BC by age 80, compared with 42-50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences may be sufficient to influence the clinical management of mutation carriers

    Regulation of nuclear envelope permeability in cell death and survival

    No full text
    The nuclear pore complex (NPC) mediates macromolecular exchange between nucleus and cytoplasm. It is a regulated channel whose functional properties are modulated in response to the physiological status of the cell. Identifying the factors responsible for regulating NPC activity is crucial to understand how intracellular signaling cues are integrated at the level of this channel to control nucleocytoplasmic trafficking. For proteins lacking active translocation signals the NPC acts as a molecular sieve limiting passage across the nuclear envelope (NE) to proteins with a MW below ~40 kD. Here, we investigate how this permeability barrier is altered in paradigms of cell death and cell survival, i.e., apoptosis induction via staurosporine, and enhanced viability via overexpression of Bcl-2. We monitor dynamic changes of the NPC's size-exclusion limit for passive diffusion by confocal time-lapse microscopy of cells undergoing apoptosis, and use different diffusion markers to determine how Bcl-2 expression affects steady-state NE permeability. We show that staurosporine triggers an immediate and gradual leakiness of the NE preceding the appearance of apoptotic hallmarks. Bcl-2 expression leads to a constitutive increase in NE permeability, and its localization at the NE is sufficient for the effect, evincing a functional role for Bcl-2 at the nuclear membrane. In both settings, NPC leakiness correlates with reduced CaÂČâș in internal stores, as demonstrated by fluorometric measurements of ER/NE CaÂČâș levels. By comparing two cellular models with opposite outcome these data pinpoint ER/NE CaÂČâș as a general and physiologically relevant regulator of the permeability barrier function of the NPC

    Effect of Calstabin1 Depletion on Calcium Transients and Energy Utilization in Muscle Fibers and Treatment Opportunities with RyR1 Stabilizers

    Get PDF
    Depletion of calstabin1 (FKBP12) from the RyR1 channel and consequential calcium leakage from the sarcoplasmic reticulum (SR) is found in certain disease conditions such as dystrophy, aging or muscle overuse. Here, we first assessed the effect of calstabin1 depletion on resting Ca2+ levels and transients. We found that depletion of calstabin1 with the calstabin1-dissociation compound FK506 increased the release of calcium from the SR by 14 % during tetanic stimulation (50 Hz, 300 ms) and delayed cytosolic calcium removal. However, we did not find a significant increase in resting cytosolic Ca2+ levels. Therefore, we tested if increased SERCA activity could counterbalance calcium leakage. By measuring the energy utilization of muscle fibers with and without FK506 treatment, we observed that FK506-treatment increased oxygen consumption by 125% compared to baseline levels. Finally, we found that pretreatment of muscle fibers with the RyR1 stabilizer JTV-519 led to an almost complete normalization of calcium flux dynamics and energy utilization. We conclude that cytosolic calcium levels are mostly preserved in conditions with leaky RyR1 channels due to increased SERCA activity. Therefore, we suggest that RyR1 leakiness might lead to chronic metabolic stress, followed by cellular damage, and RyR1 stabilizers could potentially protect diseased muscle tissue.publishe

    Clinical outcome in patients with cranial or maxillofacial bone defects reconstructed with bone stimulating implants

    No full text
    DNA replication stress is a major source of DNA strand breaks and genomic instability, and a hallmark of precancerous lesions. In these hyperproliferative tissues, activation of the DNA damage response results in apoptosis or senescence preventing or delaying their development to full malignancy. In cells, in which this antitumor barrier is disabled by mutations (for example, in p53), viability and further uncontrolled proliferation depend on factors that help to cope with replication-associated DNA damage. Replication problems preferentially arise in chromatin regions harboring complex DNA structures. DEK is a unique chromatin architectural factor which binds to non-B-form DNA structures, such as cruciform DNA or four-way junctions. It regulates DNA topology and chromatin organization, and is essential for the maintenance of heterochromatin integrity. Since its isolation as part of an oncogenic fusion in a subtype of AML, DEK has been consistently associated with tumor progression and chemoresistance. How DEK promotes cancer, however, is poorly understood. Here we show that DEK facilitates cellular proliferation under conditions of DNA replication stress by promoting replication fork progression. DEK also protects from the transmission of DNA damage to the daughter cell generation. We propose that DEK counteracts replication stress and ensures proliferative advantage by resolving problematic DNA and/or chromatin structures at the replication fork.Oncogene advance online publication, 27 October 2014; doi:10.1038/onc.2014.346

    Energy utilization in FDB fibers.

    No full text
    <p>The graph shows the estimates for the relative baseline change ± SEM after different treatment conditions (pretreatment/injection). Changes, displayed in %, are statistically valuated by the corresponding p-value. The increased SERCA activity observed after FK506 injection can be incompletely normalized by pretreatment with JTV-519.</p

    Temporal profile curves for calcium transients during single twitch activation (A) and tetanic stimulation (B).

    No full text
    <p>Each line corresponds to the average of all single fiber measurements that have been included in the statistical analysis. For improving the visibility of group differences, the time interval was adjusted accordingly. The red and black dashed lines indicate the drift of the baseline calcium during the tetanic stimulation. Treatment of fibers with 25 ÎŒM FK506 (red line) leads to an elevated inter-peak-baseline level compared to untreated control fibers (black line). </p

    The graph shows the estimates for the AUC (mean±SEM) for the four groups.

    No full text
    <p>Changes, displayed in %, are statistically valuated by the corresponding p-value. n: number of fibers measured per group. Control (n=42), FK506 (n=42), JTV-519 (n=53) and JTV-519 + FK506 (n= 44).</p
    corecore