48 research outputs found

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    On Multiphase-Linear Ranking Functions

    Full text link
    Multiphase ranking functions (MΦRFs\mathit{M{\Phi}RFs}) were proposed as a means to prove the termination of a loop in which the computation progresses through a number of "phases", and the progress of each phase is described by a different linear ranking function. Our work provides new insights regarding such functions for loops described by a conjunction of linear constraints (single-path loops). We provide a complete polynomial-time solution to the problem of existence and of synthesis of MΦRF\mathit{M{\Phi}RF} of bounded depth (number of phases), when variables range over rational or real numbers; a complete solution for the (harder) case that variables are integer, with a matching lower-bound proof, showing that the problem is coNP-complete; and a new theorem which bounds the number of iterations for loops with MΦRFs\mathit{M{\Phi}RFs}. Surprisingly, the bound is linear, even when the variables involved change in non-linear way. We also consider a type of lexicographic ranking functions, LLRFs\mathit{LLRFs}, more expressive than types of lexicographic functions for which complete solutions have been given so far. We prove that for the above type of loops, lexicographic functions can be reduced to MΦRFs\mathit{M{\Phi}RFs}, and thus the questions of complexity of detection and synthesis, and of resulting iteration bounds, are also answered for this class.Comment: typos correcte

    Interprocedural Reachability for Flat Integer Programs

    Full text link
    We study programs with integer data, procedure calls and arbitrary call graphs. We show that, whenever the guards and updates are given by octagonal relations, the reachability problem along control flow paths within some language w1* ... wd* over program statements is decidable in Nexptime. To achieve this upper bound, we combine a program transformation into the same class of programs but without procedures, with an Np-completeness result for the reachability problem of procedure-less programs. Besides the program, the expression w1* ... wd* is also mapped onto an expression of a similar form but this time over the transformed program statements. Several arguments involving context-free grammars and their generative process enable us to give tight bounds on the size of the resulting expression. The currently existing gap between Np-hard and Nexptime can be closed to Np-complete when a certain parameter of the analysis is assumed to be constant.Comment: 38 pages, 1 figur

    Solving non-linear Horn clauses using a linear Horn clause solver

    Get PDF
    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm then proceeds by applying the linearisation transformation and solver for linear Horn clauses to a sequence of sets of clauses with successively increasing dimension bound. The approach is then further developed by using a solution of clauses of lower dimension to (partially) linearise clauses of higher dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise.Comment: In Proceedings HCVS2016, arXiv:1607.0403

    Safety verification of asynchronous pushdown systems with shaped stacks

    Full text link
    In this paper, we study the program-point reachability problem of concurrent pushdown systems that communicate via unbounded and unordered message buffers. Our goal is to relax the common restriction that messages can only be retrieved by a pushdown process when its stack is empty. We use the notion of partially commutative context-free grammars to describe a new class of asynchronously communicating pushdown systems with a mild shape constraint on the stacks for which the program-point coverability problem remains decidable. Stacks that fit the shape constraint may reach arbitrary heights; further a process may execute any communication action (be it process creation, message send or retrieval) whether or not its stack is empty. This class extends previous computational models studied in the context of asynchronous programs, and enables the safety verification of a large class of message passing programs

    Is lazy abstraction a decision procedure for broadcast protocols?

    Get PDF
    Lazy abstraction builds up an abstract reachability tree by locally refining abstractions in order to eliminate spurious counterexamples in smaller and smaller subtrees. The method has proven useful to verify systems code. It is still open how good the method is as a decision procedure, i.e., whether the method terminates for already known decidable verification problems. In this paper, we answer the question positively for broadcast protocols and other infinite-state models in the class of so-called well-structured systems. This extends an existing result on systems with a finite bisimulation quotient

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system
    corecore