
Roskilde
University

Solving non-linear Horn clauses using a linear Horn clause solver

Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

Published in:
Electronic Proceedings in Theoretical Computer Science

DOI:
10.4204/EPTCS.219.4

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Kafle, B., Gallagher, J. P., & Ganty, P. (2016). Solving non-linear Horn clauses using a linear Horn clause solver.
Electronic Proceedings in Theoretical Computer Science, 219, 33-48. https://doi.org/10.4204/EPTCS.219.4

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 02. Dec. 2021

https://doi.org/10.4204/EPTCS.219.4
https://doi.org/10.4204/EPTCS.219.4

J. P. Gallagher and P. Rümmer (Eds.): 3rd Workshop
on Horn Clauses for Verification and Synthesis (HCVS)
EPTCS 219, 2016, pp. 33–48, doi:10.4204/EPTCS.219.4

Solving non-linear Horn clauses using a linear Horn clause
solver ∗

Bishoksan Kafle
Roskilde University, Denmark

kafle@ruc.dk

John P. Gallagher
Roskilde University, Denmark

IMDEA Software Institute, Spain

jpg@ruc.dk

Pierre Ganty
IMDEA Software Institute, Spain

pierre.ganty@imdea.org

In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a
non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve
this by interleaving a program transformation with a satisfiability checker for linear Horn clauses
(also called a solver for linear Horn clauses). The program transformation is based on the notion of
tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees
have bounded dimension. Such a set of clauses can be linearised. The main algorithm then proceeds
by applying the linearisation transformation and solver for linear Horn clauses to a sequence of sets
of clauses with successively increasing dimension bound. The approach is then further developed by
using a solution of clauses of lower dimension to (partially) linearise clauses of higher dimension.
We constructed a prototype implementation of this approach and performed some experiments on a
set of verification problems, which shows some promise.

1 Introduction

Many software verification problems can be reduced to checking satisfiability of a set of Horn clauses
(the verification conditions). In this paper we propose an approach for checking satisfiability of a set of
non-linear Horn clauses (clauses whose body contains more than one non-constraint atom) using a linear
Horn clause solver. A program transformation based on the notion of tree dimension is applied to a set
of non-linear Horn clauses; this gives a set of clauses that can be linearised and then solved using a linear
solver for Horn clauses. This combination of dimension-bounding, linearisation and then solving with
a linear solver is repeated for successively increasing dimension. The dimension of a tree is a measure
of its non-linearity – for example a linear tree (whose nodes have at most one child) has dimension zero
while a complete binary tree has dimension equal to its height.

A given set of Horn clauses P can be transformed into a new set of clauses P≤k, whose derivation trees
are the subset of P’s derivation trees with dimension at most k. It is known that P≤k can be transformed
to a linear set of clauses preserving satisfiability; hence if we can find a model of the linear set of clauses
then the original clauses P≤k also have a model.

The algorithm terminates with success if a model (solution) M of P≤k is also a model (after appropri-
ate translation of predicate names) of P. However if M is not a solution of P, then we proceed to generate
P≤k+1 and repeat the procedure. The algorithm terminates if P≤k is shown to be unsatisfiable (unsafe)
for some k, since this implies that P is also unsatisfiable.
∗The research leading to these results has been supported by EU FP7 project 318337, ENTRA - Whole-Systems Energy

Transparency, EU FP7 project 611004, coordination and support action ICT-Energy, EU FP7 project 610686, POLCA - Pro-
gramming Large Scale Heterogeneous Infrastructures, Madrid Regional Government project S2013/ICE-2731, N-Greens Soft-
ware - Next-GeneRation Energy-EfficieNt Secure Software, and the Spanish Ministry of Economy and Competitiveness project
No. TIN2015-71819-P, RISCO - RIgorous analysis of Sophisticated COncurrent and distributed systems.

http://dx.doi.org/10.4204/EPTCS.219.4

34 Solving non-linear Horn clauses using a linear Horn clause solver

c1. fib(A, B):- A>=0, A=<1, B=A.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Figure 1: Example CHCs Fib defining a Fibonacci function.

A more sophisticated version of the algorithm attempts to use the model M of P≤k to (partially)
linearise P≤k+1. We can exploit the model of P≤k in the following way; if P≤k+1 has a counterexample
that does not use the (approximate) solution M for P≤k , then P is unsatisfiable. We continue this process
successively for increasing value of k until we find a solution or a counterexample to P, or until resources
are exhausted.

As an example program, we consider a set of constrained Horn clauses P in Figure 1 which defines
the Fibonacci function. It is an interesting problem since its derivations are trees whose dimensions
depend on an input argument. The last clause represents a property of the Fibonacci function expressed
as an integrity constraint.

We have made a prototype implementation of this approach and performed some experiments on a
set of software verification problems, which shows some promise. The main contributions of this paper
are as follows.

1. We present a linearisation procedure for dimension-bounded Horn clauses using partial evaluation
(Section 3).

2. We give an algorithm for solving a set of non-linear Horn clauses using a linear Horn clause solver
(Section 4).

3. We demonstrate the feasibility of our approach in practice applying it to non-linear Horn clause
problems (Section 5).

2 Preliminaries

A constrained Horn clause (CHC) is a first order formula of the form p(X)← C , p1(X1), . . . , pk(Xk)
(k ≥ 0) (using Constraint Logic Programming syntax), where C is a conjunction of constraints with
respect to some constraint theory, Xi,X are (possibly empty) vectors of distinct variables, p1, . . . , pk, p
are predicate symbols, p(X) is the head of the clause and C , p1(X1), . . . , pk(Xk) is the body. An atomic
formula, or simply atom, is a formula p(t) where p is a non-constraint predicate symbol and t a tuple of
arguments. Atoms are sometimes written as A, B or H, possibly with sub- or superscripts.

A clause is called non-linear if it contains more than one atom in the body, otherwise it is called
linear. A set of Horn clauses P is called linear if P only contains linear clauses, otherwise it is called
non-linear. Integrity constraints are a special kind of Horn clauses whose head is false where false is
always interpreted as FALSE. A set of Horn clauses is sometimes called a (constraint logic) program.

An interpretation of a set of CHCs is represented as a set of constrained facts of the form A← C
where A is an atomic formula p(Z) where Z is a tuple of distinct variables and C is a constraint over Z
with respect to some constraint theory. An interpretation that makes each clause in P TRUE is called a
model of P. We say a set of Horn clause P (including integrity constraints) is safe (solvable) iff it has a
model. In some works e.g. [5, 29], a model is also called a solution and we use them interchangeably in
this paper.

Kafle, Gallagher and Ganty 35

A labeled tree c(t1, . . . , tk) (k≥ 0) is a tree whose nodes are labeled by identifiers, where c is the label
of the root and t1, . . . , tk are labeled trees, the children of the root.

Definition 1 (Tree dimension (adapted from [12])) Given a labeled tree t = c(t1, . . . , tk), the tree di-
mension of t represented as dim(t) is defined as follows:

dim(t) =

0 if k = 0
maxi∈[1..k] dim(ti) if there is a unique maximum
maxi∈[1..k] dim(ti)+1 otherwise

Given a set of Horn clauses, we associate with each clause p(X)← C , p1(X1), . . . , pk(Xk) a unique iden-
tifier c whose arity is k.

Labelled trees can represent Horn clause derivations, where node labels are clause identifiers.

Definition 2 (Trace tree) A trace tree for an atom A in a set of Horn clauses P is a labelled tree
c(t1, . . . , tk) if c is a clause identifier for a clause A← C ,A1, . . . ,Ak in P (with variables suitably re-
named) and t1, . . . , tk are trace trees for A1, . . . ,Ak in P respectively.

There is a one-one correspondence between trace trees and derivation trees of Horn clauses up to
variable renaming. Thus when we speak about the dimension of a Horn clause derivation, we refer to the
dimension of its corresponding trace tree.

Using the clauses shown in Figure 1 along with their identifiers, Figure 2 (a) shows a trace tree
t = c3(c2(c2(c1,c1),c1)) and Figure 2 (b) shows its tree dimension. It can be seen that dim(t) = 1.

Figure 2: (a) a trace tree and (b) its tree dimension.

To make the paper self contained, we describe the transformation to produce a dimension-bounded
set of clauses. Given a set of CHCs P and k ∈ N, we split each predicate p occurring in P into the
predicates p≤d and p=d where d ∈ {0,1, . . . ,k}. An atom with predicate p≤d or p=d is denoted H≤d or
H=d respectively. Such atoms have derivation trees of dimension at most d and exactly d respectively.

Definition 3 (At-most-k-dimension program P≤k) Let P be a set of CHCs. P≤k consists of the follow-
ing clauses (adapted from [28, 24]):

1. Linear clauses:

If H← C ∈ P , then H=0← C ∈ P≤k.

If H← C ,B1 ∈ P then H=d ← C ,B=d
1 ∈ P≤k for 0≤ d ≤ k.

36 Solving non-linear Horn clauses using a linear Horn clause solver

%linear clauses

1. fib(0)(A,B) :- A>=0, A=<1, B=A.

2. false(0) :- A>5, B<A, fib(0)(A,B).

%epsilon-clauses

3. false[0] :- false(0).

4. fib[0](A,B) :- fib(0)(A,B).

Figure 3: Fib≤0 : at-most-0-dimension program of Fib.

2. Non-linear clauses:
If H← C ,B1,B2, . . . ,Br ∈ P with r > 1 and one of the following holds:

• For 1≤ d ≤ k, and 1≤ j ≤ r:
Set Z j = B=d

j and Zi = B≤d−1
i for 1≤ i≤ r∧ i 6= j. Then: H=d ← C ,Z1, . . . ,Zr ∈ P≤k.

• For 1≤ d ≤ k, and J ⊆ {1, . . . ,r} with |J|= 2:
Set Zi = B=d−1

i if i ∈ J and Zi = B≤d−1
i if i ∈ {1, . . . ,r}\ J. If all Zi are defined, i.e., d ≥ 2 if

r > 2, then: H=d ← C ,Z1, . . . ,Zr ∈ P≤k.

3. ε-clauses:
H≤d ← H=e ∈ P≤k for 0≤ d ≤ k , and every 0≤ e≤ d ≤ k.

P≤k is also called the k-dimension-bounded program corresponding to P. When the value of k is not
important, any program generated using the Definition 3 is called a dimension-bounded program. The
relation between P and its k-dimensional program is given by in the Proposition 1 where |= is the usual
“logical consequence” operator.

Proposition 1 (Relation between P and P≤k) Let P be a program and P≤k (k ≥ 0) be its k-dimension-
bounded program. Let p(t) be an atom where p is a predicate of P and p?(t) (? ∈ {=,≤}) be an atom
where p? is a predicate of P≤k. Then we have: P≤k |= p?(t) =⇒ P |= p(t).

In other words, Proposition 1 says that the set of facts that can be derived from P≤k is a subset of the
set of facts that can be derived from P, taking the predicate renaming into account. In this sense P≤k is
an under-approximation of P. In particular, if P≤k |= false? then P |= false.

Let S be an interpretation of a dimension-bounded set of clauses P≤k. That is, S is a set of constrained
facts of the form H=d ← C or H≤d ← C . An interpretation of P is constructed from S as follows.

Definition 4 (S↑P≤k : an interpretation of P constructed from an interpretation of P≤k) Let S be an in-
terpretation of P≤k. Then S↑P

≤k
is the following set of constrained facts.

S↑P
≤k
= {p(X)←

∨
{C | p=d(X)← C ∈ S∨ p≤d(X)← C ∈ S} | d ∈ {0...k} and p is a predicate in P}

The set S↑P
≤k

is a disjunctive interpretation of P where the interpretation of p is the disjunction of the
interpretations of the corresponding dimension-bounded versions of p in P≤k.

The at-most-0-dimension program of Fib in Figure 1 is depicted in Figure 3. In textual form we
represent a predicate p≤k by p[k] and a predicate p=k by p(k). The at-most-1-dimension program
of Fib in Figure 1 is depicted in Figure 4. Note that 0-dimension program is included in 1-dimension
program. In general, all the clauses in P≤k are also in P≤k+1. This provides a basis for an iterative

Kafle, Gallagher and Ganty 37

fib(0)(A,B) :- B=A, A=<1, A>=0.

fib(1)(A,B) :- B=F+D, C=A-2,

E=A-1, A>1, fib[0](E,F), fib(1)(C,D).

fib(1)(A,B) :- B=F+D, C=A-2, E=A-1,

A>1, fib[0](C,D), fib(1)(E,F).

fib(1)(A,B) :- B=F+D, C=A-2, E=A-1,

A>1, fib(0)(C,D), fib(0)(E,F).

false(1) :- B<A, A>5, fib(1)(A,B).

false(0) :- B<A, A>5, fib(0)(A,B).

false[1] :- false(1).

false[1] :- false(0).

false[0] :- false(0).

fib[1](A,B) :- fib(1)(A,B).

fib[1](A,B) :- fib(0)(A,B).

fib[0](A,B) :- fib(0)(A,B).

Figure 4: Fib≤1 : at-most-1-dimension program of Fib.

strategy for a bounded set of Horn clauses. Since some programs have derivation trees of unbounded
dimension, trying to verify a property for its increasing dimension separately is not a practical strategy.
It only becomes a viable approach if a solution of p≤k for some k ≥ 0 is general enough to hold for all
dimensions of P.

3 Linearisation strategies for dimension-bounded set of Horn clauses

In this section, we present linearisation strategies for set of clauses of bounded dimension. It is known
[1] that a dimension-bounded set of clauses can be linearised, preserving satisfiability. In this section we
describe a practical technique for linearisation, based on partial evaluation of an interpreter.

3.1 Linearisation based on partial evaluation

Partial evaluation (PE) has been studied for a variety of languages including logic programs [21, 14, 25,
22, 27]. We follow the pattern of transforming a program (a set of Horn clauses) by specialising an inter-
preter for that program [13, 22]. Let PE be a partial evaluator, I an interpreter and P an object program.
Then the partial evaluation of I with respect to P, denoted PE(I,P), represents the “compilation” of P
using the semantics given by I.

We first write an interpreter for Horn clause programs, which is also written as a set of Horn clauses.
Given a (possibly empty) conjunction of atoms (called a goal) the interpreter constructs a derivation,
implementing a standard left-to-right, depth-first search. In the interpreter predicate solve(Gs), Gs is
the goal, represented as a list of atoms. The basic step of the interpreter is represented by the clauses
for solve(Gs) shown in Figure 5. If the conjunction is not empty, its first atom G is selected along
with a matching Horn clause G←Cs,B in the program being interpreted, where Cs is a conjunction of
constraints and B is a conjunction of atoms. This clause is represented by hornClause(G,Cs,B) in
the interpreter. The body of the clause is conjoined with the remaining goal atoms, and the derivation
continues with the new goal Gs1. If the conjunction is empty, the derivation is successful (second clause).

38 Solving non-linear Horn clauses using a linear Horn clause solver

solve([G|Gs]) :-

hornClause(G,Cs,B), solveConstraints(Cs), append(B,Gs,Gs1),

solve(Gs1).

solve([]).

Figure 5: Depth-first interpreter for Horn clauses

To interpret a dimension-bounded set of clauses (say the bound is k), we use the fact that in all
successful runs of the interpreter in which goals are selected in increasing order of dimension, the size
of the conjunction of goals (that is, the length of the argument of solve) has an upper bound related
to k. This bound is known as the index of the set of clauses and is given as (i− 1) ∗ k+ 1, where i is
the maximum number of non-constraint atoms in the body of clauses [11]. Given this index, we can
augment the interpreter with a check on the size of the conjunction, ensuring that it never exceeds the
index. In addition, due to the requirement of increasing dimension in the selection of atoms, a left-to-
right computation rule is not sufficient; therefore we permute the set of atoms in each clause body, since
in at least one permutation the goals will be ordered by dimension. With these changes the interpreter
remains complete for clauses of the given maximum index, at the possible cost of some redundancy in
the search.

These additions result in the interpreter whose top level is shown in Figure 6. Let the interpreter
predicate solve(Gs,Index,L) mean that the conjunction of goals Gs is to be solved, and L, Index are
numbers representing the size of Gs and the maximum size of the stack of goals.

go(Index) :-

solve([false],Index,1).

solve([G|Gs],Index,L) :-

hornClause(G,Cs,B), solveConstraints(Cs),

length(B,L1), L2 is L1+L-1, L2 =< Index,

perm(B,B1), append(B1,Gs,Gs1),

solve(Gs1,Index,L2).

solve([],_,_).

Figure 6: Interpreter for linearisation

Partial evaluation of the interpreter. Given a set of facts of the form hornClause(G,Cs,B) rep-
resenting the Horn clauses to be linearised, and some value of Index, the interpreter can be partially
evaluated. We use Logen [26] to perform the partial evaluation with respect to a call to go(Index),
which initiates a proof of the goal false (see first clause of interpreter). All interpreter computations are
partially evaluated except for the calls to solve(Gs,Index,L) and the execution of constraints within
the goal solveConstraints(Cs). Furthermore Logen performs standard structure-flattening and pred-
icate renaming operations, yielding a set of clauses of the form solve i(X) :- Cs, solve j(Y),
where solve i(X) and solve j(Y) are instantiations of solve(Gs,Index,L) and Cs is a constraint.
Thus the resulting clauses are linear, and furthermore preserve the meaning of the original clauses as
given by the interpreter, by correctness of the partial evaluation procedure. The linearisation procedure
is independent of the constraint theory underlying the clauses.

Kafle, Gallagher and Ganty 39

Proposition 2 Let P be a program and P≤k (k ≥ 0) be its k-dimension-bounded program. Let i be the
maximum number of atoms in clause bodies of P. Let Index = (i− 1) ∗ k + 1. Let P′ be a partial
evaluation of the interpreter in Figure 6, with respect to P and the goal go(Index). Then P≤k |= false≤k

iff P′ |= go(Index).

Furthermore P′ is linear if the partial evaluator follows the strategy described above. Combining Propo-
sitions 2 and 1, we conclude that P′ |= go(Index)⇒ P |= f alse.

Note that linearisation required partial evaluation of the perm predicate, giving a blow-up in program
size related to the length of the clause bodies. This is further discussed at the end of Section 5.

3.2 Obtaining linear over-approximations with a partial model

First we note that the set of predicates in P≤k is a subset of the set of predicates in P≤k+1. Given a model
M for the predicates in P≤k, P≤k+1 can be linearised if we replace each occurrence of a predicate from
P≤k in the body of a clause in P≤k+1 with the corresponding constraint from the model M. The resulting
set of clauses is linear since P≤k+1 contains at most one predicate in its body from P≤k+1 which is not in
P≤k. Furthermore if P≤k+1 has a model then so does the set of clauses resulting from the replacement;
the converse is however not the case since the model M represents an over-approximation of P≤k. An
example is given in Section 4.

More generally, we can replace any subset of the occurrences of predicates from P≤k in P≤k+1. We
summarise this in the following lemma.
Lemma 1 (Linear over-approximation) Let M be a model of the predicates in P≤k, represented by a
set of “constrained facts” p(X)←C where p is a predicate in P≤k. Let P′ be any set of clauses obtained
from P≤k+1 by replacing some of the occurrences of predicates p(X) from P≤k in the bodies of clauses
in P≤k+1 with their corresponding interpretation C in M. Then

1. If P≤k+1 has a model then so does P′;

2. If P′ contains no predicate from P≤k, then P′ is linear.

4 Algorithm for solving sets of non-linear Horn clauses

A basic procedure for solving a set of non-linear Horn clauses using a linear Horn clause solver is
presented in Algorithms 1 and 2. We use the term “linear solver” for linear Horn clause solver for
brevity. The main procedure SOLVE(P) takes a set of non-linear Horn clauses P as input and outputs
(upon termination) (safe, solution) if P is solvable or (unsafe, counterexample) otherwise. We represent
counterexample as a trace tree. For a linear program it corresponds to a sequence of clauses used to
derive a counterexample.
Definition 5 (S|t) Let S be an interpretation of a set of Horn clauses P. Let t be any trace tree for some
atom A in P (Definition 2) and let At be the set of heads of clauses with identifiers in t. Then S|t is defined
to be the set

S|t = {(H← C) | (H← C) ∈ S∧H 6∈ At}.
Informally, the derivation corresponding to t does not use any predicate interpreted by S|t . This notion is
used in Algorithm 2.

Algorithm 2 is an extended version of Algorithm 1, which uses the solution for P≤k to help to linearise
P≤k+1 and also allows a more refined termination condition based on whether or not the solution for P≤k

is used in constructing a counterexample for P≤k+1.
The procedures make use of several sub-procedures which will be described next.

40 Solving non-linear Horn clauses using a linear Horn clause solver

4.1 Components of the algorithm

• KDIM(P,k): produces an at-most-k-dimension program P≤k (Definition 3). By definition, P≤k is
linear for k = 0. For our example program presented in Figure 1, Fib≤0 is shown in Figure 3 which
is linear since there is at-most one non-constraint atom in the body of each clauses.

• SOLVE LINEAR(P′): solves a set of linear Horn clauses P′. We assume the following about a
linear solver: (i) if it terminates on P′, then it returns either safe and a solution or unsafe and a
counterexample; (ii) it is sound, that is, if it returns a solution S for P′ then P′ has a model and S is
a solution (model) of P′; if it returns unsafe and a counterexample cEx then P′ is unsafe and cEx
is a witness. In our setting (Algorithms 1 and 2), P′ corresponds to a linearised version of P≤k for
some P and k ≥ 0. For technical reasons, the top level predicate false=k of P≤k if any, is renamed
to false before passing to a linear solver.
In essence, any Horn clause solver which complies with our assumption, for example QARMC
[17], Convex polyhedral analyser [23], ELDARICA [20] etc. can be used in a black-box fashion
but in this paper, we make use of a solver described in [23], which is based on abstract interpreta-
tion [6] over the domain of convex polyhedra [7] but without refinement using finite tree automata.
The solver produces the following solution for the program in Figure 3. We can check it is in fact
a solution (model).

fib(0)(A,B) :- [-A>= -1,A>=0,B=A].

fib[0](A,B) :- [-A>= -1,A>=0,B=A].

false[0] :- <>. % <> means that there is no model for false[0],

%so we can discard it

• LINEARISE(P,k,S) generates a linear set of clauses from P≤k and an interpretation S for P≤k.
Let S be a set of constrained facts of the form p(X)← C , where p is a predicate from P≤k, the
procedure replaces every clause from P≤k with head p(X) by p(X)← C . This produces a set of
clauses say P′. Then the procedure LINEARISE PE(P′,Index) is called, which is the linearisation
procedure based on partial evaluation described in Section 3 where Index is a bound for the stack
usage for linearising P≤k.

An excerpt from Fib≤1 is shown below.

false(1) :- A>5, B<A, fib(1)(A,B).

fib(1)(A,B) :- A>1, C=A-2, E=A-1, B=F+D, fib(1)(C,D), fib[0](E,F).

fib(0)(A,B) :- B=A, A=<1, A>=0.

After reusing the solution obtained for Fib≤0 and linearising, we obtain the following set of linear
clauses.

false(1) :- A>5, B<A, fib(1)(A,B).

fib(1)(A,B) :- -A>= -2, A>1, A-C=2, B-D=1, fib(1)(C,D).

Continuing to run our algorithm, the following solution obtained for Fib≤2 becomes a solution for
the program in Figure 1 (the original program) and the algorithm terminates.

fib(0)(A,B) :- [-A>= -1,A>=0,B=1].

fib[0](A,B) :- [-A>= -1,A>=0,B=1].

Kafle, Gallagher and Ganty 41

fib(1)(A,B) :- [A>=2,A+ -B=0].

fib[1](A,B) :- [A+ -B>= -1,B>=1,-A+B>=0].

fib(2)(A,B) :- [A>=4,-2*A+B>= -3].

fib[2](A,B) :- [A>=0,B>=1,-A+B>=0].

Algorithm 1: Algorithm for solving a set of Horn clauses

1 Procedure SOLVE(P)
Input: A set of CHCs P
Output: (safe, solution), (unsafe, cex)

2 k← 0;
3 P′← LINEARISE(P,k, /0);
4 (status,Result)← SOLVE LINEAR(P′) ; /* Result is a solution or a cex */

5 if status = safe then
6 if (Result↑P

≤k
is a solution of P) then return (safe,Result↑P

≤k
) ;

7 k← k+1;
8 else
9 return (unsafe,Result) ; /* Result is a cex */

10 goto 3;

Algorithm 2: Algorithm for solving a set of Horn clauses, with reuse of lower dimension solutions

1 Procedure SOLVE(P)
Input: A set of CHCs P
Output: (safe, solution), (unsafe, cex)

2 k← 0;
3 S← /0;
4 P′← LINEARISE(P,k,S);
5 (status,Result)← SOLVE LINEAR(P′) ; /* Result is a solution or a cex */

6 if status = safe then
7 if (Result↑P

≤k
is a solution of P) then return (safe,Result↑P

≤k
) ;

8 k← k+1;
9 S← Result;

10 else
11 if S = S|Result then return (unsafe,Result); ; /* Result is a linear cex */

12 S← S|Result; /* S|Result: Definition 5 */

13 goto 4;

4.2 Reuse of solutions, refinement and linearisation

Algorithm 2 solves non-linear Horn clauses P in essentially the same way as Algorithm 1, but incorpo-
rates a refinement phase in the case that the linear solver finds a counterexample. This counterexample

42 Solving non-linear Horn clauses using a linear Horn clause solver

Algorithm 3: Algorithm for linearising a set of clauses

1 Procedure LINEARISE(P, k, S)
Input: A set of CHCs P, an integer k and a set of constrained facts S
Output: A linearised set of clauses Plin

2 P≤k←KDIM(P,k) ; /* Definition 3 */

3 P′← SUBSTITUTE(P≤k,S); /* substitute atoms of P≤k with their

interpretations from S */

4 Index← (i−1)∗ k+1 ; /* where i is the maximal number of body atoms of P */

5 Plin← LINEARISE PE(P′, Index) ; /* Section 3.1 */

6 return Plin

possibly uses some of the model of the lower-dimension predicates S, in which case it is not certain
whether it is a false alarm or a real counterexample. If the counterexample did use some of the predicate
solutions from S, then we discard those solutions (Algorithm 2, line 12) and return to the linearisation
step. If the counterexample does not use any predicate solutions from S, then it is a real counterexample
(Algorithm 2, line 12). We will clarify this with an example program (linear for simplicity) shown below.

c1. false:- X=0, p(X).

c2. false:- q(X).

c3. p(X):- X>0.

c4. q(X):-X=0.

Suppose we have an approximate solution S = {p(X) : −true} for the predicate p(X). Using this
solution, the above program is transformed into the following program.

c1. false:- X=0, p(X).

c2. false:- q(X).

c3. p(X):- true. (approximate solution)

c4. q(X):-X=0.

The trace c1(c3) is a counterexample for this transformed program but not to the original program
(since it uses approximate solution for the predicate p). However the trace c2(c4) is a counterexample for
this program as well as to the original since it does not use any approximate solution for the predicates
appearing in the counterexample.

A schematic overview of Algorithm 2 is shown in Figure 7. At each iteration of the abstraction-
refinement loop, the at-most-k-dimension under-approximation of P is computed, then linearised and
solved using a solver for linear Horn clauses.

Kafle, Gallagher and Ganty 43

CA – Counterexample Analyser
Lin – Linearisation procedure LS – Linear Horn clause solver

Abstraction Refinement
CHC P

k = 0,S = /0

Lin
P′,S,k

LS

(safe, R↑P
≤k
)

R solution P?

NoS← R,k = k+1

S,R,k
CA

S← S|R,k

(unsafe, R)
S = S|R?

Figure 7: Abstraction-refinement scheme for solving non-linear Horn clauses using a solver for linear
Horn clauses. P′ is a set of linear CHC obtained by linearising the at-most-k-dimension underapproxi-
mation, P≤k, of P.

The soundness of Algorithms 1 and 2 is captured by Proposition 3.

Proposition 3 (Soundness) If Algorithm 1 or 2 returns safe and a solution S for a set of clauses P then
P is safe and S is in fact a solution of P; if it returns unsafe and a counterexample cEx then P is unsafe
and cEx is a witness.

Another property of the Algorithm 2 is that of progress, that is, the same counterexample does not
arise more than once.

5 Experimental results

We made a prototype implementation of Algorithm 2 in the tool called LHornSolver1. It uses the solver
described in [23] without refinement as a linear Horn clause solver. LHornSolver is written in Ciao
prolog [19] and is interfaced with Parma Polyhedra Library [2] and Yices SMT solver [10] for handling
constraints. Then we carried out an experiment on a set of 44 non-linear CHC verification problems
taken from the repository2 of software verification benchmarks, the recursive category of SV-COMP3 [4]
and the tool QARMC. The experiments were run on a MAC computer running OS X on 2.3 GHz Intel
core i7 processor and 8 GB memory. The benchmarks that we use in the experiments are not beyond the
capabilities of existing solvers, but they are challenging. These programs are first translated to Prolog
syntax using the tools ELDARICA4 [20] and SeaHorn [18]. Our aim with these experiments is to explore:
(1) whether using a linear solver for non-linear problem solving is practical; (2) the relationship between
the solvability of a problem and its dimension; and (3) how the current results compare with the results
using the state of the art non-linear Horn clause verification tool (in our case RAHFT [23]). The results
are summarized in Table 1.

1https://github.com/bishoksan/LHornSolver
2https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/
3http://sv-comp.sosy-lab.org/2015/benchmarks.php
4https://github.com/uuverifiers/eldarica

https://github.com/bishoksan/LHornSolver
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/
http://sv-comp.sosy-lab.org/2015/benchmarks.php
https://github.com/uuverifiers/eldarica

44 Solving non-linear Horn clauses using a linear Horn clause solver

RAHFT LHornSolver
Program Safety # iter. Time (s) Safety #iter. Time (s)
Addition03 false-unreach safe 2 < 1 ? ? ?
McCarthy91 false-unreach unsafe 0 < 1 ? ? ?
addition.nts.pl safe 0 < 1 safe 1 < 1
bfprt.nts.pl safe 0 < 1 safe 2 4
binarysearch.nts.pl safe 0 < 1 safe 1 1.1
countZero.nts.pl safe 0 < 1 safe 1 < 1
eq.horn unsafe 0 < 1 unsafe 2 < 1
fib.pl safe 0 < 1 ? ? ?
identity.nts.pl safe 0 < 1 safe 1 < 1
merge.nts.pl safe 0 < 1 safe 1 1.7
palindrome.nts.pl safe 0 < 1 safe 1 < 1
parity.nts.pl unsafe 1 < 1 ? ? ?
remainder.nts.pl unsafe 0 < 1 unsafe 1 < 1
revlen.pl safe 0 < 1 safe 1 < 1
running.nts.pl unsafe 1 < 1 ? ? ?
sum 10x0 false-unreach unsafe 10 10 ? ? ?
sum non eq false-unreach unsafe 0 < 1 ? ? ?
suma1.horn unsafe 0 < 1 unsafe 1 < 1
suma2.horn unsafe 0 < 1 unsafe 2 < 1
summ SG1.r.horn safe 0 < 1 ? ? ?
summ SG2.r.horn safe 8 78 ? ? ?
summ SG3.horn safe 0 < 1 safe 1 < 1
summ b.horn safe 2 1.7 ? ? ?
summ binsearch.horn safe 1 3 ? ? ?
summ cil.casts.horn safe 0 < 1 safe 1 < 1
summ formals.horn safe 0 < 1 safe 1 < 1
summ g.horn safe 0 < 1 ? ? ?
summ globals.horn safe 0 < 1 safe 1 < 1
summ h.horn safe 0 < 1 safe 2 < 1
summ local-ctx-call.horn safe 0 < 1 safe 1 < 1
summ locals.horn safe 0 < 1 ? ? ?
summ locals2.horn safe 0 < 1 safe 1 < 1
summ locals3.horn safe 0 < 1 safe 1 < 1
summ locals4.horn safe 0 < 1 safe 2 2.2
summ mccarthy2.horn safe 3 5 ? ? ?
summ multi-call.horn safe 0 < 1 safe 1 < 1
summ nested.horn safe 0 < 1 safe 1 < 1
summ ptr assign.horn safe 0 < 1 safe 1 < 1
summ recursive.horn safe 0 < 1 ? ? ?
summ rholocal.horn safe 0 < 1 safe 1 < 1
summ rholocal2.horn safe 0 < 1 safe 1 < 1
summ slicing.horn safe 0 < 1 ? ? ?
summ summs.horn safe 0 < 1 ? ? ?
summ typedef.horn safe 0 < 1 safe 1 < 1
summ x.horn safe 0 < 1 ? ? ?
Average 0.64 2.3 1.185 < 1

Table 1: Experimental results on non-linear CHC verification problems with a timeout of 5 minutes.

Kafle, Gallagher and Ganty 45

In the table Program represents a program, Safety represents a verification result, #iter. and Time
(s) successively represent the number of refinement iterations and the time in seconds need to solve a
program using both RAHFT and LHornSolver. It is to note that the underlying abstract interpreter, that
is, the convex polyhedral analyser (CPA) is the same for both RAHFT and LHornSolver but LHornSolver
uses it to solve linear Horn clauses though the CPA is not optimised for linear problems. The column
#iter. for LHornSolver represents a value of k for which a solution of P≤k (under-approximation) of a set
of clauses P becomes a solution for P or P≤k becomes unsafe. The symbol “?” means that the result is
unknown within the given time bound. The result “safe” means that the program is safe (solvable) and
“unsafe” means it is unsafe.

LHornSolver solves 27 out of 44 (about 61%) problems within a second. In most of these problems,
a solution of an under approximation (P≤k) becomes a solution for the original program or P≤k becomes
unsafe for a fairly small value of k (1 or 2). This suggests that the solvability of a problem is shallow
with respect to its dimension. This demonstrates the feasibility of solving a set of non-linear Horn clauses
using a solver for linear Horn clauses.

In contrast, RAHFT solves all the problem. The difference in results maybe due to the following
reason: the linear solver that is used in LHornSolver is the CPA (without refinement in contrast to [23]).
The solver terminates but produces false alarms. If we use CPA with refinement as in [23], then we
lose predicates names (due to program transformation), so the solution or counterexamples produced by
the tool do not correspond to the original program (it is very hard to keep track of the changes). This
hinders the reuse of solution from lower dimension to linearise program of higher dimension or refine it
using the counterexample trace. Other solvers which don’t modify the programs but produce solutions or
counterexamples can be used as a linear solver in principle and we leave it for the future work. Another
disadvantage of using CPA is that, if it cannot solve a linear program, then it emits an abstract trace which
is checked for a feasibility. If it is spurious then LHornSolver returns with unknown (in principle we can
refine the program but the refinement will have the problem as mentioned above). So it is highly unlikely
that the trace picked by the tool non-deterministically results to be a real counterexample. We noticed
in our experiments that the trace picked was spurious most of the times and LHornSolver immediately
returned “unknown” answer before the timeout. This also explains why solving time of LHornSolver is
less than that of RAHFT.

The interpreter described in Figure 6 computed a permutation of the atoms in a clause body; partial
evaluation of the permutation procedure can cause a blow-up of the size of the linearised program, relative
to the number of atoms in clause bodies. During our experiment we found that the maximum number of
atoms in the bodies of the clauses in our benchmark programs was 5 and the value of k was relatively
small (k = 0 . . .2). The permutation procedure can be avoided if we first generate an at-most-k-dimension
program whose body atoms are ordered by increasing dimension. This needs unfolding of the ε-clauses,
since atoms whose predicate is p≤d cannot be ordered directly; only atoms with predicates of the form
p=dcan be ordered. We have not yet evaluated the trade-offs in these two approaches.

6 Related Work

In the world of Horn clause solvers, after fixing a constraint theory, we can distinguish solvers depending
on whether they can handle general non-linear Horn clauses or not. A majority of solvers [18, 16, 30,
29, 23] handle non-linear Horn clauses but there are notable exceptions like VeriMAP [8] or Sally5.
For both VeriMAP and Sally, their underlying reasoning engine handles only linear Horn clauses which

5https://github.com/SRI-CSL/sally

https://github.com/SRI-CSL/sally

46 Solving non-linear Horn clauses using a linear Horn clause solver

restricts, in principle, their applicability. Our contribution is to lift this restriction by allowing those
tools to be applied on arbitrary sets of Horn Clauses, linear or not, through a linearisation procedure that
underapproximates the set of solutions. We give empirical evidence that this underapproximation often
provides enough coverage to enable the verification of the original set of Horn clauses. To summarize,
we allow solvers with restrictions to be applied on any input at the price of an under-approximation
which often results in full coverage.

Our linearisation method based on partial evaluation described in Section 3.1 is related to the lin-
earisation method based on fold-unfold transformations described by De Angelis et al. [9]. While their
procedure transforms the target set of clauses directly, we transform an interpreter for the clauses using
a generic partial evaluation procedure. Any clause transformation procedure could be formulated as a
meta-program and partial evaluation applied to that program to yield the specified transformation. Thus
neither approach offers any more power than the other. However the use of partial evaluation is arguably
more flexible. The interpreter that is partially evaluated in our procedure is a standard interpreter for
Horn clauses, modified with a bound on the size of goals, directly incorporating a general result that
there is an upper bound on the size of goals in derivations with dimension-bounded programs. This pro-
vides a very generic starting point for the transformation with an explicit relation to the semantics of the
clauses. A whole family of similar transformations could be formulated by varying the interpreter (for
example using breadth-first search). The procedure in [9] is tailored to a restrictive setting where only
goal clauses (integrity constraints) are non-linear and rest of the clauses are linear; correctness has to be
established for that case.

Ganty, Iosif and Konečný [15] used the notion of tree dimension for computing summaries of pro-
cedural programs by underapproximating them. Roughly speaking, they compute procedure summaries
iteratively, starting from the program behaviors captured by derivation trees of dimension 0. Then they
reuse these summaries to compute summaries for program behaviors captured by derivation trees of di-
mension 1 and so on for 2, 3, etc. Kafle, Gallagher and Ganty [24] adapted the idea of dimension-based
underapproximations to the setting of Horn clause systems. They gave empirical evidence supporting the
thesis that for small values of the dimension the solutions are general enough to hold for every dimen-
sion. Their approach still required the use of general Horn-clause solvers capable of handling non-linear
clauses. In this paper, we lift this requirement and allow the use of solvers for linear clauses only. More-
over, we provide an abstraction refinement loop that enables the solutions for lower dimension to be
reused when searching for solutions in higher dimension.

7 Conclusion and future work

We presented an abstraction-refinement approach for solving a set of non-linear Horn clauses using an
off-the-shelf linear Horn clause solver. It was achieved through a linearisation of a dimension bounded set
of Horn clauses (which are known to be linearisable) using partial evaluation and the use of a linear Horn
clause solver. Experiment on a set of non-linear Horn clause verification problems using our approach
shows that the approach is feasible (a linear solver can be used for solving non-linear problems) and the
solvability of a problem is shallow with respect to its dimension.

A linear set of clauses is essentially a transition system. Many tools exist whose input languages have
a form such as C programs (without procedure calls), control flow graphs, Boogie programs, and such
formalisms whose semantics is usually given as a transitions system. The results of this paper suggest
that such tools could be applied to the verification of non-linear Horn clauses.

In the future, we plan to compare our results with the results from a specialised linear Horn clause

Kafle, Gallagher and Ganty 47

solver like VeriMap and other non-linear Horn clause solvers. We also plan to experiment with different
linearisation strategies for Horn clauses and study their effects in Horn clause verification.

Acknowledgement

The authors would like to thank José F. Morales for his help with Ciao Prolog foreign language interface
and some parts of the implementation.

References

[1] Foto N. Afrati, Manolis Gergatsoulis & Francesca Toni (2003): Linearisability on Datalog programs. Theor.
Comput. Sci. 308(1-3), pp. 199–226, doi:10.1016/S0304-3975(02)00730-2.

[2] Roberto Bagnara, Patricia M. Hill & Enea Zaffanella (2008): The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and software systems.
Sci. Comput. Program. 72(1-2), pp. 3–21, doi:10.1016/j.scico.2007.08.001.

[3] Christel Baier & Cesare Tinelli, editors (2015): Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Lecture Notes
in Computer Science 9035, Springer, doi:10.1007/978-3-662-46681-0.

[4] Dirk Beyer (2015): Software Verification and Verifiable Witnesses - (Report on SV-COMP 2015). In Baier &
Tinelli [3], pp. 401–416, doi:10.1007/978-3-662-46681-0 31.

[5] Nikolaj Bjørner, Kenneth L. McMillan & Andrey Rybalchenko (2013): On Solving Universally Quantified
Horn Clauses. In Francesco Logozzo & Manuel Fähndrich, editors: SAS, LNCS 7935, Springer, pp. 105–
125. Available at http://dx.doi.org/10.1007/978-3-642-38856-9_8.

[6] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Robert M. Graham, Michael A. Harrison
& Ravi Sethi, editors: POPL, ACM, pp. 238–252. Available at http://doi.acm.org/10.1145/512950.
512973.

[7] Patrick Cousot & Nicolas Halbwachs (1978): POPL. ACM Press, pp. 84–96, doi:10.1145/512760.512770.
Available at http://dl.acm.org/citation.cfm?id=512760.

[8] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2014): VeriMAP: A Tool for
Verifying Programs through Transformations. In Erika Ábrahám & Klaus Havelund, editors: TACAS, LNCS
8413, Springer, pp. 568–574. Available at http://dx.doi.org/10.1007/978-3-642-54862-8_47.

[9] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2015): Proving cor-
rectness of imperative programs by linearizing constrained Horn clauses. TPLP 15(4-5), pp. 635–650,
doi:10.1017/S1471068415000289.

[10] Bruno Dutertre (2014): Yices 2.2. In Armin Biere & Roderick Bloem, editors: Computer-Aided Verifica-
tion (CAV’2014), Lecture Notes in Computer Science 8559, Springer, pp. 737–744, doi:10.1007/978-3-319-
08867-9 49.

[11] Javier Esparza, Pierre Ganty, Stefan Kiefer & Michael Luttenberger (2011): Parikh’s theorem: A simple and
direct automaton construction. Inf. Process. Lett. 111(12), pp. 614–619, doi:10.1016/j.ipl.2011.03.019.

[12] Javier Esparza, Stefan Kiefer & Michael Luttenberger (2007): On Fixed Point Equations over Commuta-
tive Semirings. In: STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science,
Proceedings, LNCS 4393, Springer, pp. 296–307, doi:10.1007/978-3-540-70918-3 26.

[13] J. P. Gallagher (1986): Transforming Logic Programs by Specialising Interpreters. In: Proceedings of the
7th European Conference on Artificial Intelligence (ECAI-86), Brighton, pp. 109–122.

http://dx.doi.org/10.1016/S0304-3975(02)00730-2
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/978-3-662-46681-0
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-642-38856-9_8
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512760.512770
http://dl.acm.org/citation.cfm?id=512760
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1017/S1471068415000289
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1016/j.ipl.2011.03.019
http://dx.doi.org/10.1007/978-3-540-70918-3_26

48 Solving non-linear Horn clauses using a linear Horn clause solver

[14] John P. Gallagher (1993): Tutorial on Specialisation of Logic Programs. In David A. Schmidt, editor: Pro-
ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipu-
lation, PEPM’93, Copenhagen, Denmark, June 14-16, 1993, ACM, pp. 88–98, doi:10.1145/154630.154640.
Available at http://dl.acm.org/citation.cfm?id=154630.

[15] Pierre Ganty, Radu Iosif & Filip Konečný (2013): Underapproximation of Procedure Summaries for Inte-
ger Programs. In Nir Piterman & Scott A. Smolka, editors: TACAS 2013. Proceedings, Lecture Notes in
Computer Science 7795, Springer, pp. 245–259, doi:10.1007/978-3-642-36742-7 18.

[16] Sergey Grebenshchikov, Ashutosh Gupta, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012):
HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribution). In Cormac Flanagan &
Barbara König, editors: TACAS, LNCS 7214, Springer, pp. 549–551. Available at http://dx.doi.org/
10.1007/978-3-642-28756-5_46.

[17] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesizing soft-
ware verifiers from proof rules. In Jan Vitek, Haibo Lin & Frank Tip, editors: ACM SIGPLAN PLDI,
ACM, pp. 405–416, doi:10.1145/2254064.2254112. Available at http://dl.acm.org/citation.cfm?
id=2254064.

[18] Arie Gurfinkel, Temesghen Kahsai & Jorge A. Navas (2015): SeaHorn: A Framework for Verifying C Pro-
grams (Competition Contribution). In Baier & Tinelli [3], pp. 447–450, doi:10.1007/978-3-662-46681-0 41.

[19] Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-Garcı́a, Edison Mera, José F.
Morales & Germán Puebla (2012): An overview of Ciao and its design philosophy. TPLP 12(1-2), pp.
219–252, doi:10.1017/S1471068411000457.

[20] Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kuncak & Philipp Rümmer (2012): A
Verification Toolkit for Numerical Transition Systems - Tool Paper. In Dimitra Giannakopoulou & Do-
minique Méry, editors: FM. Proceedings, Lecture Notes in Computer Science 7436, Springer, pp. 247–251,
doi:10.1007/978-3-642-32759-9 21.

[21] N. Jones, C.K. Gomard & P. Sestoft (1993): Partial Evaluation and Automatic Software Generation. Prentice
Hall.

[22] Neil D. Jones (2004): Transformation by interpreter specialisation. Sci. Comput. Program. 52, pp. 307–339,
doi:10.1016/j.scico.2004.03.010.

[23] Bishoksan Kafle & John P Gallagher (2015): Horn clause verification with convex polyhedral abstraction and
tree automata-based refinement. Computer Languages, Systems & Structures, doi:10.1016/j.cl.2015.11.001.

[24] Bishoksan Kafle, John P. Gallagher & Pierre Ganty (2015): Decomposition by tree dimension in Horn clause
verification. In Alexei Lisitsa, Andrei P. Nemytykh & Alberto Pettorossi, editors: VPT., EPTCS 199, pp.
1–14, doi:10.4204/EPTCS.199.1.

[25] Michael Leuschel (1994): Partial Evaluation of the “Real Thing”. In Laurent Fribourg & Franco Turini, edi-
tors: LOPSTR, Proceedings, Lecture Notes in Computer Science 883, Springer, pp. 122–137, doi:10.1007/3-
540-58792-6 8.

[26] Michael Leuschel, Daniel Elphick, Mauricio Varea, Stephen-John Craig & Marc Fontaine (2006): The Ecce
and Logen partial evaluators and their web interfaces. In John Hatcliff & Frank Tip, editors: PEPM 2006,
ACM, pp. 88–94, doi:10.1145/1111542.1111557.

[27] Michael Leuschel & Germán Vidal (2014): Fast offline partial evaluation of logic programs. Inf. Comput.
235, pp. 70–97, doi:10.1016/j.ic.2014.01.005.

[28] Michael Luttenberger & Maximilian Schlund (2016): Convergence of Newton’s Method over Commutative
Semirings. Inf. Comput. 246, pp. 43–61, doi:10.1016/j.ic.2015.11.008.

[29] Kenneth L. McMillan & Andrey Rybalchenko (2013): Solving Constrained Horn Clauses using Interpola-
tion. Technical Report, Microsoft Research.

[30] Philipp Rümmer, Hossein Hojjat & Viktor Kuncak (2013): Disjunctive Interpolants for Horn-Clause Veri-
fication. In Natasha Sharygina & Helmut Veith, editors: CAV, Lecture Notes in Computer Science 8044,
Springer, pp. 347–363, doi:10.1007/978-3-642-39799-8. Available at 10.1007/978-3-642-39799-8_24.

http://dx.doi.org/10.1145/154630.154640
http://dl.acm.org/citation.cfm?id=154630
http://dx.doi.org/10.1007/978-3-642-36742-7_18
http://dx.doi.org/10.1007/978-3-642-28756-5_46
http://dx.doi.org/10.1007/978-3-642-28756-5_46
http://dx.doi.org/10.1145/2254064.2254112
http://dl.acm.org/citation.cfm?id=2254064
http://dl.acm.org/citation.cfm?id=2254064
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1017/S1471068411000457
http://dx.doi.org/10.1007/978-3-642-32759-9_21
http://dx.doi.org/10.1016/j.scico.2004.03.010
http://dx.doi.org/10.1016/j.cl.2015.11.001
http://dx.doi.org/10.4204/EPTCS.199.1
http://dx.doi.org/10.1007/3-540-58792-6_8
http://dx.doi.org/10.1007/3-540-58792-6_8
http://dx.doi.org/10.1145/1111542.1111557
http://dx.doi.org/10.1016/j.ic.2014.01.005
http://dx.doi.org/10.1016/j.ic.2015.11.008
http://dx.doi.org/10.1007/978-3-642-39799-8
10.1007/978-3-642-39799-8_24

	1 Introduction
	2 Preliminaries
	3 Linearisation strategies for dimension-bounded set of Horn clauses
	3.1 Linearisation based on partial evaluation
	3.2 Obtaining linear over-approximations with a partial model

	4 Algorithm for solving sets of non-linear Horn clauses
	4.1 Components of the algorithm
	4.2 Reuse of solutions, refinement and linearisation

	5 Experimental results
	6 Related Work
	7 Conclusion and future work

