85 research outputs found

    Molecular characterization of novel Cryptosporidium fish genotypes in edible marine fish

    Get PDF
    Current knowledge of Cryptosporidium species/genotypes in marine fish is limited. Following phylogenetic analysis at the 18S rDNA locus, a recent study identified six new genotypes of Cryptosporidium colonizing edible fish found in European seas. Of these, five grouped in a clade together (#Cryptofish 1–5) and one grouped separately (#Cryptofish 7). In the present study, after phylogenetic analyses of #Cryptofish1, #Cryptofish2, #Cryptofish4, #Cryptofish5 and #Cryptofish7 at the actin locus, the presence of two major clades was confirmed. In addition, when possible, longer 18S amplicons were generated. In conclusion, the small genetic distances between these genotypes designated as a novel marine genotype I (#Cryptofish 1-5) suggest that they may be genetic variants of the same species, while the designated novel marine genotype 2 (#Cryptofish 7) is clearly representative of a separate species

    What can be learned from phenotyping and genotyping analyses of Scedosporium prolificans isolates from diverse origins?

    Get PDF
    Introduction: Scedosporium prolificans is a filamentous fungus considered as an emerging opportunistic member of the order Microascaceae. This fungus has a broad clinical spectrum and can cause different types of infections: localized colonization in immunocompetent hosts or disseminated mycosis in immunocompromised patients. Moreover, S. prolificans resistance to most antifungal agents has been reported. Compared to the well characterized Scedosporium / Pseudallescheria complex, little is known about the fundamental aspects of S. prolificans biology, pathogenicity and epidemiology. Aim of the study: Our goal was to characterize a large population of S. prolificans strains, isolated from animals, human, or environment samples in different countries (European, USA and Australia). Results & methods: All strains were prospectively collected, and grown at 30# C on Sabouraud’s agar medium with kanamycin for 1 week. DNA was extracted from subcultures using UltraClean Fecal# DNA kit (MoBio, France). To improve the knowledge of this species at the phylogenetic level, we combined phenotypic criteria such as macroscopic and microscopic morphology features, antifungal susceptibilities based on E-test# method, and genotypic characterization using multi-loci approaches (superoxide dismutase, beta-tubulin and internal transcript spacer genes). Phylogenetic trees were constructed with unambiguously CLUSTALW aligned sequences using the neighbour-joining method with Kimura-2 parameter as substitution model and maximum parsimony analysis, using the BioEdit version 7.0.0 and Phylip version 2.0 softwares. Discussion: Among our collection composed of 59 isolates, we identified three macroscopically different morphotypes of S. prolificans and some genetic polymorphisms (1.8–2.2% difference between the analyzed sequences). These low sequence polymorphisms reflected intra-specific genetic variations. Therefore, we hypothesized that S. prolificans might be stable in space, and apparently insensitive to xenical or environmental factors. No correlation between clinical-biological characteristics and genotypic or phenotypic criteria of S. prolificans strains was found. In conclusion, our results supported the current perception of S. prolificans as a unique species and an emerging opportunistic pathogen

    The Flagellar Regulator fliT Represses Salmonella Pathogenicity Island 1 through flhDC and fliZ

    Get PDF
    Salmonella pathogenicity island 1 (SPI1), comprising a type III section system that translocates effector proteins into host cells, is essential for the enteric pathogen Salmonella to penetrate the intestinal epithelium and subsequently to cause disease. Using random transposon mutagenesis, we found that a Tn10 disruption in the flagellar fliDST operon induced SPI1 expression when the strain was grown under conditions designed to repress SPI1, by mimicking the environment of the large intestine through the use of the intestinal fatty acid butyrate. Our genetic studies showed that only fliT within this operon was required for this effect, and that exogenous over-expression of fliT alone significantly reduced the expression of SPI1 genes, including the invasion regulator hilA and the sipBCDA operon, encoding type III section system effector proteins, and Salmonella invasion of cultured epithelial cells. fliT has been known to inhibit the flagellar machinery through repression of the flagellar master regulator flhDC. We found that the repressive effect of fliT on invasion genes was completely abolished in the absence of flhDC or fliZ, the latter previously shown to induce SPI1, indicating that this regulatory pathway is required for invasion control by fliT. Although this flhDC-fliZ pathway was necessary for fliT to negatively control invasion genes, fliZ was not essential for the repressive effect of fliT on motility, placing fliT high in the regulatory cascade for both invasion and motility

    CCQM-K55.b (Aldrin) : Final report: october 2012. CCQM-K55.b key comparison on the characterization of organic substances for chemical purity

    Get PDF
    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.b, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2010/2011. Nineteen national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of aldrin present as the main component in the comparison sample for CCQM-K55.b which consisted of technical grade aldrin obtained from the National Measurement Institute Australia that had been subject to serial recrystallization and drying prior to sub-division into the units supplied for the comparison. Aldrin was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300 Da to 500 Da] and low polarity (pKOW < −2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC). The key comparison reference value (KCRV) for the aldrin content of the material was 950.8 mg/g with a combined standard uncertainty of 0.85 mg/g. The KCRV was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 0.3% to 0.6% using a mass balance approach and 0.5% to 1% using a qNMR method. The major analytical challenge posed by the material proved to be the detection and quantification of a significant amount of oligomeric organic material within the sample and most participants relying on a mass balance approach displayed a positive bias relative to the KCRV (overestimation of aldrin content) in excess of 10 mg/g due to not having adequate procedures in place to detect and quantify the non-volatile content—specifically the non-volatile organics content—of the comparison sample. There was in general excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content and the residual solvent content of the sample. The comparison demonstrated the utility of 1H NMR as an independent method for quantitative analysis of high purity compounds. In discussion of the participant results it was noted that while several had access to qNMR estimates for the aldrin content that were inconsistent with their mass balance determination they decided to accept the mass balance result and assumed a hidden bias in their NMR data. By contrast, laboratories that placed greater confidence in their qNMR result were able to resolve the discrepancy through additional studies that provided evidence of the presence of non-volatile organic impurity at the requisite level to bring their mass balance and qNMR estimates into agreement.Fil: Westwood, Steven. Bureau International des Poids et Mesures (BIPM); FranciaFil: Josephs, Ralf. Bureau International des Poids et Mesures (BIPM); FranciaFil: Choteau, Tiphaine. Bureau International des Poids et Mesures (BIPM); FranciaFil: Daireaux, Adeline. Bureau International des Poids et Mesures (BIPM); FranciaFil: Mesquida, Charline. Bureau International des Poids et Mesures (BIPM); FranciaFil: Wielgosz, Robert. Bureau International des Poids et Mesures (BIPM); FranciaFil: Rosso, Adriana. Instituto Nacional de Tecnología Industrial (INTI); ArgentinaFil: Ruiz de Arechavaleta, Mariana. Instituto Nacional de Tecnología Industrial (INTI); ArgentinaFil: Davies, Stephen. National Measurement Institute (NMIA); AustraliaFil: Wang, Hongjie. National Measurement Institute (NMIA); AustraliaFil: Pires do Rego, Eliane Cristina. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Marques Rodrigues, Janaína. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: de Freitas Guimarães, Evelyn. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Barreto Sousa, Marcus Vinicius. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Monteiro, Tânia Maria. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Alves das Neves Valente, Laura. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Marques Violante, Fernando Gustavo. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Rubim, Renato. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Almeida, Ribeiro. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Baptista Quaresma, Maria Cristina. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Nogueira, Raquel. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMetro); BrasilFil: Windust, Anthony. Institute for National Measurement Standards. National Research Council Canada (NRC-INMS); CanadáFil: Dai, Xinhua. National Institute of Metrology (NIM); ChinaFil: Li, Xiaomin. National Institute of Metrology (NIM); ChinaFil: Zhang, Wei. National Institute of Metrology (NIM); ChinaFil: Li, Ming. National Institute of Metrology (NIM); ChinaFil: Shao, Mingwu. National Institute of Metrology (NIM); ChinaFil: Wei, Chao. National Institute of Metrology (NIM); ChinaFil: Wong, Siu-kay. Government Laboratory of Hong Kong SAR (GLHK); ChinaFil: Cabillic, Julie. Laboratoire National de Métrologie et d’Essais (LNE); FranciaFil: Gantois, Fanny. Laboratoire National de Métrologie et d’Essais (LNE); FranciaFil: Philipp, Rosemarie. Bundesanstalt für Materialforschung (BAM); AlemaniaFil: Pfeifer, Dietmar. Bundesanstalt für Materialforschung (BAM); AlemaniaFil: Hein, Sebastian. Bundesanstalt für Materialforschung (BAM); AlemaniaFil: Klyk-Seitz, Urszula-Anna. Bundesanstalt für Materialforschung (BAM); AlemaniaFil: Ishikawa, Keiichiro. National Metrology Institute of Japan (NMIJ); JapónFil: Castro, Esther. Centro Nacional de Metrología (CENAM); MéxicoFil: Gonzalez, Norma. Centro Nacional de Metrología (CENAM); MéxicoFil: Krylov, Anatoly. D. I. Mendeleev Institute for Metrology (VNIIM); RusiaFil: Lin, Teo Tang. Health Sciences Authority (HSA); SingapurFil: Kooi, Lee Tong. Health Sciences Authority (HSA); SingapurFil: Fernandes-Whaley, M. National Metrology Institute of South Africa (NMISA); SudáfricaFil: Prévoo, D. National Metrology Institute of South Africa (NMISA); SudáfricaFil: Archer, M. National Metrology Institute of South Africa (NMISA); SudáfricaFil: Visser, R. National Metrology Institute of South Africa (NMISA); SudáfricaFil: Nlhapo, N. National Metrology Institute of South Africa (NMISA); SudáfricaFil: de Vos, B. National Metrology Institute of South Africa (NMISA); SudáfricaFil: Ahn, Seonghee. Korea Research Institute of Standards and Science (KRISS); Corea del SurFil: Pookrod, Preeyaporn. National Institute of Metrology of Thailand (NIMT); TailandiaFil: Wiangnon, Kanjana. National Institute of Metrology of Thailand (NIMT); TailandiaFil: Sudsiri, Nittaya. National Institute of Metrology of Thailand (NIMT); TailandiaFil: Muaksang, Kittiya. National Institute of Metrology of Thailand (NIMT); TailandiaFil: Cherdchu, Chainarong. National Institute of Metrology of Thailand (NIMT); TailandiaFil: Gören, Ahmet Ceyhan. National Metrology Institute (TUBITAK UME); TurquíaFil: Bilsel, Mine. National Metrology Institute (TUBITAK UME); TurquíaFil: LeGoff, Thierry. LGC Limited; Reino UnidoFil: Bearden, Dan. National Institute of Standards and Technology (NIST); Estados UnidosFil: Bedner, Mary. National Institute of Standards and Technology (NIST); Estados UnidosFil: Duewer, David. National Institute of Standards and Technology (NIST); Estados UnidosFil: Hancock, Diane. National Institute of Standards and Technology (NIST); Estados UnidosFil: Lang, Brian. National Institute of Standards and Technology (NIST); Estados UnidosFil: Lippa, Katrice. National Institute of Standards and Technology (NIST); Estados UnidosFil: Schantz, Michele. National Institute of Standards and Technology (NIST); Estados UnidosFil: Sieber, John. National Institute of Standards and Technology (NIST); Estados Unido

    Genomics in neurodevelopmental disorders: an avenue to personalized medicine

    Get PDF
    Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered, the etiological variability and the heterogeneous clinical presentation, the need for genotype — along with phenotype- based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in genomic analysis and their translation into clinical practice

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    Targeted treatments for fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders (ASD), with up to 50% of males and some females with FXS meeting criteria for ASD. Autistic features are present in a very high percent of individuals with FXS, even those who do not meet full criteria for ASD. Recent major advances have been made in the understanding of the neurobiology and functions of FMRP, the FMR1 (fragile X mental retardation 1) gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to the dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to the dysregulated translational pathway. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model at multiple stages of development. Clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess cognitive change that might be associated with treatment. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. Therefore, targeted treatments developed for FXS may also target subgroups of ASD, and clinical trials in FXS may serve as a model for the development of clinical trial strategies for ASD and other cognitive disorders
    corecore