53 research outputs found

    SenseWorld: Towards Cyber-Physical Social Networks

    Full text link
    Web-based social networks such as LinkedIn, FaceBook and MySpace have gained wide popularity in recent years. With the advent of ubiquitous sensing, future social net-works will be cyber-physical, combining measured ele

    A Scalable Vector Symbolic Architecture Approach for Decentralized Workflows

    Get PDF
    Vectors Symbolic Architectures (VSAs) are distributed representations that combine random patterns, representing atomic symbols across a hyper-dimensional vector space, into new symbolic vector representations that semantically represent the component vectors and their relationships. In this paper, we extend the VSA approach and apply it to decentralized workflows, capable of executing distributed compute nodes and their interdependencies. To achieve this goal, services must be discovered and orchestrated in a decentralized way with the minimum communication overhead whilst providing detailed information about the workflow - tasks, dependencies, location, metadata, and so on. To this end, we extended VSAs using a hierarchical vector chunking scheme that enables semantic matching at each level and provides scaling up to tens of thousands of services. We then show how VSAs can be used to encode complex workflows by building primitives that represent sequences (pipelines) and then extend this to support full Directed Acyclic Graphs (DAGs) and apply this to five well-known Pegasus scientific workflows to demonstrate the approac

    Efficient orchestration of Node-RED IoT workflows using a vector symbolic architecture

    Get PDF
    Numerous workflow systems span multiple scientific domains and environments, and for the Internet of Things (IoT), Node-RED offers an attractive Web based user interface to execute IoT service-based workflows. However, like most workflow systems, it coordinates the workflow centrally, and cannot run within more transient environments where nodes are mobile. To address this gap, we show how Node-RED workflows can be migrated into a decentralized execution environment for operation on mobile ad-hoc networks, and we demonstrate this by converting a Node-RED based traffic congestion detection workflow to operate in a decentralized environment. The approach uses a Vector Symbolic Architecture (VSA) to dynamically convert Node-Red applications into a compact semantic vector representation that encodes the service interfaces and the workflow in which they are embedded. By extending existing services interfaces, with a simple cognitive layer that can interpret and exchange the vectors, we show how the required services can be dynamically discovered and interconnected into the required workflow in a completely decentralized manner. The resulting system provides a convenient environment where the Node-RED front-end graphical composition tool can be used to orchestrate decentralized workflows. In this paper, we further extend this work by introducing a new dynamic VSA vector compression scheme that compresses vectors for on-the-wire communication, thereby reducing communication bandwidth while maintaining the semantic information content. This algorithm utilizes the holographic properties of the symbolic vectors to perform compression taking into consideration the number of combined vectors along with similarity bounds that determine conflict with other encoded vectors used in the same context. The resulting savings make this approach extremely efficient for discovery in service-based decentralized workflows

    Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satellite Imagery

    Full text link
    When modeling geo-spatial data, it is critical to capture spatial correlations for achieving high accuracy. Spatial Auto-Regression (SAR) is a common tool used to model such data, where the spatial contiguity matrix (W) encodes the spatial correlations. However, the efficacy of SAR is limited by two factors. First, it depends on the choice of contiguity matrix, which is typically not learnt from data, but instead, is assumed to be known apriori. Second, it assumes that the observations can be explained by linear models. In this paper, we propose a Convolutional Neural Network (CNN) framework to model geo-spatial data (specifi- cally housing prices), to learn the spatial correlations automatically. We show that neighborhood information embedded in satellite imagery can be leveraged to achieve the desired spatial smoothing. An additional upside of our framework is the relaxation of linear assumption on the data. Specific challenges we tackle while implementing our framework include, (i) how much of the neighborhood is relevant while estimating housing prices? (ii) what is the right approach to capture multiple resolutions of satellite imagery? and (iii) what other data-sources can help improve the estimation of spatial correlations? We demonstrate a marked improvement of 57% on top of the SAR baseline through the use of features from deep neural networks for the cities of London, Birmingham and Liverpool.Comment: 10 pages, 5 figure

    On Localizing Urban Events with Instagram

    Get PDF
    This paper develops an algorithm that exploits picture-oriented social networks to localize urban events. We choose picture-oriented networks because taking a picture requires physical proximity, thereby revealing the location of the photographed event. Furthermore, most modern cell phones are equipped with GPS, making picture location, and time metadata commonly available. We consider Instagram as the social network of choice and limit ourselves to urban events (noting that the majority of the world population lives in cities). The paper introduces a new adaptive localization algorithm that does no require the user to specify manually tunable parameters. We evaluate the performance of our algorithm for various real-world datasets, comparing it against a few baseline methods. The results show that our method achieves the best recall, the fewest false positives, and the lowest average error in localizing urban events.Ope

    Dynamic distributed orchestration of Node-RED IOT workflows using a vector symbolic architecture

    Get PDF
    There are a large number of workflow systems designed to work in various scientific domains, including support for the Internet of Things (IoT). One such workflow system is Node-RED, which is designed to bring workflow-based programming to IoT. However, the majority of scientific workflow systems, and specifically systems like Node-RED, are designed to operate in a fixed networked environment, which rely on a central point of coordination in order to manage the workflow. The main focus of the work described in this paper is to investigate means whereby we can migrate Node-RED workflows into a decentralized execution environment, so that such workflows can run on Edge networks, where nodes are extremely transient in nature. In this work, we demonstrate the feasibility of such an approach by showing how we can migrate a Node-RED based traffic congestion workflow into a decentralized environment. The traffic congestion algorithm is implemented as a set of Web services within Node-RED and we have architected and implemented a system that proxies the centralized Node-RED services using cognitively-aware wrapper services, designed to operate in a decentralized environment. Our cognitive services use a Vector Symbolic Architecture to semantically represent service descriptions and workflows in a way that can be unraveled on the fly without any central point of control. The VSA-based system is capable of parsing Node-RED workflows and migrating them to a decentralized environment for execution; providing a way to use Node-RED as a front-end graphical composition tool for decentralized workflow

    AI Foundation Models for Weather and Climate: Applications, Design, and Implementation

    Full text link
    Machine learning and deep learning methods have been widely explored in understanding the chaotic behavior of the atmosphere and furthering weather forecasting. There has been increasing interest from technology companies, government institutions, and meteorological agencies in building digital twins of the Earth. Recent approaches using transformers, physics-informed machine learning, and graph neural networks have demonstrated state-of-the-art performance on relatively narrow spatiotemporal scales and specific tasks. With the recent success of generative artificial intelligence (AI) using pre-trained transformers for language modeling and vision with prompt engineering and fine-tuning, we are now moving towards generalizable AI. In particular, we are witnessing the rise of AI foundation models that can perform competitively on multiple domain-specific downstream tasks. Despite this progress, we are still in the nascent stages of a generalizable AI model for global Earth system models, regional climate models, and mesoscale weather models. Here, we review current state-of-the-art AI approaches, primarily from transformer and operator learning literature in the context of meteorology. We provide our perspective on criteria for success towards a family of foundation models for nowcasting and forecasting weather and climate predictions. We also discuss how such models can perform competitively on downstream tasks such as downscaling (super-resolution), identifying conditions conducive to the occurrence of wildfires, and predicting consequential meteorological phenomena across various spatiotemporal scales such as hurricanes and atmospheric rivers. In particular, we examine current AI methodologies and contend they have matured enough to design and implement a weather foundation model.Comment: 44 pages, 1 figure, updated Fig.
    corecore