
On Localizing Urban Events with Instagram

Abstract—This paper develops an algorithm that exploits
picture-oriented social networks to localize urban events. We
choose picture-oriented networks because taking a picture re-
quires physical proximity, thereby revealing the location of the
photographed event. Furthermore, most modern cell phones are
equipped with GPS, making picture location, and time metadata
commonly available. We consider Instagram as the social network
of choice and limit ourselves to urban events (noting that the
majority of the world population lives in cities). The paper
introduces a new adaptive localization algorithm that does not
require the user to specify manually tunable parameters. We
evaluate the performance of our algorithm for various real-world
datasets, comparing it against a few baseline methods. The results
show that our method achieves the best recall, the fewest false
positives, and the lowest average error in localizing urban events.

I. INTRODUCTION

This paper investigates social networks that carry pictorial
information as a means to localize urban events of interest in
time and in space. In turn, the ability to localize events gives
rise to new search services that allow users to view important
events matching a category of interest on a map, and remotely
experience those events through the lenses of eye-witnesses.
Since the majority of the world population lives in cities [1],
we restrict ourselves to urban events.

The work is made possible thanks to the proliferation of
picture-taking devices (e.g., over 2 billion smart phone users
at present [2]) and picture-sharing media that offer a real-
time view of ongoing events. We consider Instagram [3] as
our social medium of choice. Instagram is a real-time picture
sharing network, whose popularity has increased dramatically
in recent years. At the time of writing, Instagram has more than
500 million users, who collectively upload 80 million pictures
a day [4]. This is up from 400 million, 300 million, 150
million, and 30 million users in 2015, 2014, 2013, and 2012,
respectively. Based on an experiment from a sample of images
we collected that are publicly viewable, more than 15% contain
location metadata, making it meaningful (given the large total
volume) to consider Instagram as a tool for localization.

Localizing user-specified types of events based on pictures
calls for a capability to associate the pictures with specific
event keywords. Fortunately, Instagram users frequently asso-
ciate customized metadata with images to identify what an
image is of. Specifically, Instagram allows users to tag images
they upload and also associate a spatial location based on the
GPS. The followers of a user also have the option to like or
comment on the image posts. This makes it possible to search
Instagram images for those matching event-specific keywords.
Instagram offers an application programming interface (API)
that allows searching for images by using a tag keyword. Users
can search for both current and previous images.

The above suggests that a text query for an event such
as “#JapanEarthquake” or “#ChicagoMarathon” can retrieve

pictures with annotations matching the query, from which the
corresponding event can be localized. The manner in which
pictures matching a set of keywords are identified is not the
challenge addressed in this paper (It constitutes a standard
database indexing problem). The challenge we address below
is the way one might identify and localize events in space and
in time given the set of retrieved pictures matching a query.

One of the prior works [5] explored the feasibility of using
Instagram for identifying points of interest (POIs) such as
tourist attractions within a city. It uses distance-based clus-
tering techniques to group together images that fall within a
threshold distance [6]. Generalizing the approach to enable lo-
calizing events is challenging for multiple reasons. First, events
come and go. Hence, finding their signature requires detection
not only in space but also in time. Second, different events
can have a very different popularity and spatial signature. For
example, a local marathon might engender a very different
picture-taking response than a terror attack, which complicates
the detection process. Instead, algorithms are needed that are
capable of using the time and space properties of the data
shared during an event without any labeled data.

The solution we propose is based on a technique that
uses the distribution of pictures in the time domain along
with a spatial range to observe the events to generate clusters
followed by a false alarm elimination. We eliminate any
manual inspection for parameter settings with the help of a
self-evaluation scoring metric. In order to help us design an
algorithm, we propose a set of assumptions that guide us in
the derivation. Some of these assumptions fall within the scope
of the design while the remaining are verified later during the
evaluation with the help of collected datasets.

The rest of this paper is organized as follows. We first de-
scribe the state of art and related work in Section II. Section III
describes the assumptions we make in order to derive the
algorithm. We present the design of our system in Section IV.
The collection of datasets, verification of assumptions, and
algorithm performance results are discussed in Section V.
Finally, we present the conclusion of our work in Section VI.

II. RELATED WORK

A. Instagram: A popular image sharing social network

Due to an explosive increase in the user base over the past
two years, Instagram has emerged as a popular platform among
researchers to analyze social networks from a crowdsensing
point of view. In [7], Instagram was studied as a social
media visualization tool to identify cultural dynamics in major
cities. The study particularly zoomed into the city Tel Aviv,
Israel, for a period of two weeks collecting images shared
on important national event days. In [8], an analysis was
presented to identify different types of users on Instagram and
the categories of pictures they take. The work characterized
Instagram based on eight categories of pictures shared by five
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distinct types of users. In [5], the authors have described about
an approach that is capable of identifying important tourist
attractions (POIs) with the help of Instagram. The idea of
their approach is to discover places that are collectively geo-
tagged using pictures by unique users. However the focus of
this work is still limited to locations that are extensively visited
by tourists. A very recent work [9] explores the capability of
using Instagram pictures along with the metadata to find the
correlation between obesity patterns and fast food restaurants
located in few selected counties within United States. The
focus of this work is specific to a particular category type,
which is food, in order to find the trend of tags used by the
people belonging to a certain region and compare with the
corresponding health factors. In another work by Mejova et
al. [10], a further analysis has been performed on the food
habits of users on a global scale to answer questions related
to health research. They identify the existence of emotions
and health-related topics with Instagram pictures containing
#foodporn as one of the tags. They also suggest that there is a
social approval for users sharing healthy pictures compared
to those sharing unhealthy pictures in terms of likes and
followers. These works have provided a good indication of
using Instagram for identifying popular and trending locations
or topics among users.

B. Event Localization: Using geo-tagged data from social
networks

The exploitation of social networks that expose location
information has been studied in depth long before Instagram
became popular. In [11], a study was reported on a popu-
lar location-based social network, Foursquare, to reveal user
mobility patterns in urban spaces. Another work [12] focused
on analyzing the mobility patterns of users to identify social
ties based on co-location history, and determine the relation
between location visits and network strength of a user. In
[13], the authors have demonstrated the capability of using
a popular social network, Twitter, to jointly localize events
and sources. The focus was to make use of location affinities
of users jointly with location references in tweets to infer
location of events and sources in an iterative manner. In [14],
the authors have presented a clustering technique for finding
the dynamics of a city based on the check-ins posted by
users on Foursquare. Noulas et al. [15] proposed a method
that uses Foursquare check-ins to identify regions that are
similar within a geographic area. In [16], an analysis of a
photo sharing online network, Flickr, was presented to show
the variation in the popularity of photos around a geographical
location. Although most of these works have highly focused
on using Foursquare or Flickr with geo-tagged data, but the
purpose of using Foursquare or Flickr is completely different
from that of Instagram among users. The latter is widely used
to share images of an observed entity along with location
information, while the former are used to post reviews and
suggestions for a visited place. Detecting and localizing events
using Instagram requires a different approach from the ones
described above. This is mainly due to presence of several
constraints in the way images and other data are shared by
people for different types of events. Not all events are equally
popular. For example, a Taylor Swift concert might have more
observers at the event location as compared to an earthquake
event. Also there is a high chance that several groups of

users from different locations are talking about the same event.
[17] is an early work that uses Instagram geo-tagged images
to detect hyper-local events. Their method tries to identify
any abnormal signal generated from a concentrated region
followed by a classification technique to detect events. The
authors of [18] have described about the implementation of a
system capable of detecting events using geo-tagged data from
networks such as Instagram. Their method determines the burst
of keywords (tags) within a time interval, which is then mod-
eled as Gaussians and events are detected based on mapping
with bursty keywords. In [19] a method for event detection
using Twitter has been described. Two classifier models are
built based on text and image features that later decide the
class of the geo-tagged tweet. [20] is another event detection
work based on geo-tagged data from Flickr network. They
focus on nine events using an online event directory to define
a bounding box around venue using GPS data from Flickr
images. The events are then detected using time-series analysis
within the box based on a threshold. The authors of [21]
describe a real-time detection of crash incidents using geo-
tagged tweets. However their approach uses a classification
model as well using a training dataset. The work presented
in [22] is another event detection technique using geo-tagged
images from social networks. A hybrid similarity graph is
constructed based on tags and images to form clusters that
are then classified using a trained model. In [23], the authors
have presented an approach to detect events from social media
with the help of geographical temporal pattern. Even though
this work does not rely on any training dataset to build a
classification model but it requires a few manual parameter
tuning in order to achieve a good accuracy. There is also
no discussion about removal of false alarms generated during
event detection.

Contrary to the previous event detection and localization
works using geo-tagged data from social networks, we provide
a simple and robust approach that works online for streaming
data feed without using any classification model. We do not
rely on any training data to identify new events for localization
and can easily adapt to any event type of varying degree
of popularity. The novelty we introduce in this paper is an
approach to find clusters of events (matching the user query)
followed by false positive elimination without any manual
parameter tuning. To our best knowledge, this approach has
never been explored before for event localization in urban
spaces.

III. ASSUMPTIONS

In this section we describe a set of assumptions that
we use to design our localization algorithm. We divide our
assumptions into two categories: Category 1 is the set of
assumptions that fall inside the scope of our algorithm design
pattern and Category 2 is the set of assumptions that can be
verified using experiments. For the first category, the stated
assumptions allow us to set the ground rules on top of which
we design our system. We do not have to verify the validity of
assumptions from this category as they must always hold true
for the algorithm to work. For the second category, the stated
assumptions describe the conditions for which the algorithm
must work. The assumptions from this category need to be
verified for validity which we provide later with the help of



randomly selected event samples from the collected datasets
in the evaluation section.

A. Category 1 Assumptions

• Assumption 1: There can be only one event occurrence
at a specific point location (latitude, longitude) during a
particular time interval.

• Assumption 2: Two or more independent events can take
place during the same time interval or have some overlap
in their respective time intervals.

• Assumption 3: The users (sensors) generating the signals
(pictures) are independent of each other. This means we
do not consider the follower-followee relationship among
the users for designing our algorithm. Every user has a
range ‘R’, which determines the maximum distance of
observing an event.

• Assumption 4: If there is a single user producing multiple
signals over a period of time such that there is no other
user supporting the observations within ‘R’ distance, then
we mark that user as a false alarm.

B. Category 2 Assumptions

• Assumption 5: It is possible for users to post pictures of
an event from a location (False location) different than the
actual place of occurrence (True location). For example,
multiple users watching a sports match at the stadium
and those watching the same match in a group at a bar
in a different city can post pictures for the same event
indicating two different locations.

• Assumption 6: The number of users (sensors) generating
signals (pictures) from the True (Actual) location of an
event are always more than those located at any of the
False locations for the same event. However, it is possible
that the number of users from the True location of an
event are less than the count from a False location of a
different event.

• Assumption 7: The events generally belong to two major
categories and the distribution of the signals (pictures)
generated in the time domain follows a certain pattern
for both the cases:
a) Planned Events : The events that are scheduled well

ahead in time, such as music concerts, generate at-
tention from users much before the event begins but
reaches a peak in the observations only after the event
has actually started and then it gradually decreases
over time.

b) Unplanned Events : The events that are not scheduled
ahead of their occurrence, such as an earthquake,
generate a few posts at the actual time of occurrence
but then reaches a peak in observation during the post
event actions, such as relief or medical operations, and
also gradually decreases over time.

The peak in the observation is the mode (most frequent
value) of the distribution. To handle both the cases we
try to estimate the start time and the end time, so that we
can localize the observed signals within this time frame.
Since both the cases are skewed to some extent, the mean
and standard deviation will be not good at predicting the
spread of the distribution. Thus, we consider the first

quartile as the estimated start, and the third quartile as
the estimated end time.

• Assumption 8: There is some amount of prevalence in the
popular tags used to describe an event regardless of True
or False locations.

IV. SYSTEM DESIGN

The goal of our work is to identify the locations of real-
world events in time and space based on the data shared by
users on the Instagram social network. We derive an algorithm
that is capable of detecting and localizing the events in physical
space. Figure 1 is a visual representation of the design of our
system indicating the flow between different components. In
the following subsections, we describe the functionality of each
component in the pipeline.

Feed Input and Crawler
- Instagram API

Metadata Processing -
chunking input dataset

Event Detection and Localization

Timeline Interface - time
based visualization on a map

Fig. 1. Architecture Pipeline of the Localization Tool for Instagram

A. Feed Input and Crawler

Our system follows the feed subscription model as opposed
to the search query model. This allows the user to monitor
the events of different types on a timely basis in near real
time. The user can view any of the subscribed events from the
past or create a new subscription for an event with the help
of a “tag” keyword. This tag can be anywhere between from
being completely generic (#Earthquake) to completely specific
(#JapanEarthquake). It is left upto to the user to decide about
the amount of generalization required for the feed retrieval.
Once an event has been subscribed the crawler service makes
request to the Instagram API using the associated tag at an
interval of 1 hour. This choice of request interval is based
on two factors: (i) To avoid any spam detection, and (ii) A
limitation of 5000 calls per hour set by the Instagram API.
The API allows us to search for images based on a tag in two
different ways; the first one is by popularity and the second
one is by recency. Since we have a subscription model we use
the most recent results during every interval. Every image has
a tag ID in the metadata such that they are sorted in ascending
order in the recency list. This allows our crawler service to
identify the tag ID at which the call needs to be stopped for
the current interval. The retrieved images along with metadata
are then sent to the next component for further processing.



B. Metadata Processing

The image posts obtained from the crawler service are
processed in this step to remove any noise present. Every
image has a metadata component, which contains several
fields. We make use of only image id, image url, user id,
created time, tags, and location. We filter out any image for
which the location field is empty. Next we make use of created
time of the image post to divide the data feed into intervals.
This step is repeated for every API call and the image is added
to the corresponding interval. Any updated interval is then sent
to the next component in the pipeline.

C. Event Detection and Localization

The main contribution of our work is a novel and simple
algorithm to identify locations of physical events in urban
spaces using Instagram. We make use of the assumptions
described earlier in order to derive our localization algorithm.
The following two subsections contain the problem definition
and the details of our algorithm. In the problem definition
section, we introduce all the variables that will be used during
the derivation of our algorithm.

1) Problem Definition: Each signal (picture) generated by
a user is a tuple of the format < l, t, u, tag >, where l -
location, t - image post time, u - user id, tag - set of tags.

If for a selected time interval there are ‘K’ unique locations
(l1,l2, . . . , lk) present then for each location lk∈K →
< tik, ujk, tagik >, where
< tik >→ time instance of an image i at location ‘k’
< ujk >→ user j posting an image i at location ‘k’
< tagik >→ tags of an image i at location ‘k’

A sensing range ‘R’ is needed for the algorithm, which
determines the upper limit until which an user can observe
(or talk about) the event. We eliminate this parameter setting
with the help of silhouette score in order to avoid any manual
intervention for our algorithm. This metric computation is a
three step process based on the following:

• Cohesion Factor (ai): For the ith data point, we find the
average distance to all other data points within the same
cluster.

• Separation Factor (bi): For the ith data point, we find the
average distance from all the data points of another cluster
to which it does not belong. Then we take the minimum
of the average distances from all the clusters.

• Silhouette Coefficient: Finally, we assign the score to the

ith data point using the equation si =
(bi − ai)
max(ai, bi)

.

The silhouette coefficient for any data point is in the range
[−1, 1]. The ideal best case is when ai = 0 for which the
maximum value of 1 is attained. For our algorithm we vary
the value of ‘R’ between 0.25 and 30 miles.

For the current time interval, we use a padding of previous
3 days to find and localize the events. All the events in
current time interval are represented by a set of cluster ξ =
[E1,E2,. . .,Em], where m ≤ K.

2) Localization Algorithm: The main intuition behind the
derivation of our algorithm is that for any current time interval
we try to find the estimated start and end time of the image
sharing activity for all possible geo-tagged locations within
that interval. We then group these locations into an event
cluster based on time overlap and a sensing range parameter.
Finally we eliminate any false alarm clusters generated with
the help of similarity between popular tags present in each
cluster. The algorithm is described below:

i) In the current time interval, we arrange lk∈K in descend-
ing order by length of associated ujk (If there is a tie, then
we use length of associated tik). Let this be the ordered
list of locations. We make use of both Assumptions 1 and
6 for this step.

ii) Process the locations from the ordered list one at a time.
iii) For a selected location, use the < tik, ujk, tagik >

including the padded intervals. Using Assumption 7, we
find the estimated start and end time of the distribution.
There are 4 cases possible:
• Both estimated times are outside the current interval.

This means that this event occurred in one of the
previous intervals. Discard this location and move to
next location.

• Both estimated time are inside the current interval. Use
the location for analysis with data within estimated time
range.

• One of the estimated time is inside the current inter-
val. Use the location for analysis with data between
boundary of interval and the estimated time.

• Both the estimated times capture the boundaries of
current interval. Use the location for analysis with all
data within the interval boundary.

iv) Let the lk for analysis from the current interval have
tstart k as start time and tend k as end time. If this is
the very first location in the ordered list, then form a
new cluster E1 representing an event. This lk is the prime
location (lprime) for this newly formed cluster indicating
the most probable value.

v) If the lk for analysis is not the first location from the
ordered list, then scan through each event cluster from ξ
for two conditions:
• If the tstart k and tend k have overlap with

(tstart prime, tend prime) the prime location of that
cluster.

• If lk is within ‘R’ miles of distance from the prime
location lprime (using Assumption 3).

If both conditions are satisfied, then lk goes into the same
cluster.

vi) If only the first condition is satisfied then either lk is
a false alarm location (Assumption 5) or another event
location happening at the same time (Assumption 2).
When both conditions are not satisfied then lk is highly
likely to be an undetected event location. In either case,
we form a a new cluster with lk as the prime location.

vii) We repeat the steps 5 and 6 for varying values of ‘R’
as indicated earlier and compute the silhouette score in
each case. Finally, we select the range (Rsel) with the
maximum score.

viii) Once all the locations from the ordered list are analyzed,
we eliminate those clusters that have only a single user



inside with no support within Rsel distance according to
Assumption 4.

ix) In order to eliminate the false alarm clusters, we use
Assumption 8 to compute the similarity in the vectors
formed by considering the top 10 commonly used tags
from each cluster. We process the clusters in the order
they were formed and check for identical clusters from
the remaining. The similarity threshold setting is described
later in the text.

x) The estimated location of an event is the weighted average
of the ‘l’s inside the cluster. The weights are derived using
the fraction of images posted from a location compared
to images present inside the cluster.

For elimination of false alarm clusters, we first need to
identify the type of event. Events can be broadly classified into
two categories: (i) Single Entity (SE), and (ii) Multiple Entities
(ME). For example, Taylor Swift being a single entity (person)
can perform only at one valid location during a particular
time interval. If there are several clusters identified for a SE
event in the same interval then only one of them can be
a true positive while the remaining are false alarm clusters.
However, a ME event such as marathon or tornado can occur
at several locations during the same interval. Based on the
clusters generated, we looked at a few random samples and
noticed that the size of the main cluster in case of SE events
was always significantly large compared to the false alarms.
At the same time, the clusters in case of ME events were
comparable in size.

TABLE I. CLUSTER STATISTICS FOR EVENTS WITH SINGLE ENTITY

Event Date City Top 5 cluster size

Taylor Swift 09/29/15 St. Louis,
USA [169, 27, 6, 5, 1]

Taylor Swift 10/03/15 Toronto,
Canada [940, 24, 6, 6, 5]

Maroon V 06/12/15 Milan,
Italy [134, 13, 8, 5, 5]

Maroon V 09/17/15
Manila,
Philip-
pines

[181, 11, 9]

TABLE II. CLUSTER STATISTICS FOR EVENTS WITH MULTIPLE
ENTITES

Event Date Cities Top 5 cluster size

Marathon 10/18/15 Columbus, OH, USA [266,172,112,79,74]

Detroit, MI, USA

Toronto, Canada

Marathon 10/25/15 Washington DC, USA [153,134,88,58,46]

Frankfurt, Germany

Jakarta, Indonesia

The cluster statistics for a random sample of events are
provided in table I for SE and table II for ME. The last
column in the tables corresponds to the top five clusters by
size (number of data points) for each event type on a particular
date. It can be clearly observed that in case of SE events the
top most cluster by size is extremely dense in comparison to
other clusters, whereas in case of ME events the true clusters
don’t have a huge difference. This can be attributed to the fact
ME events attract the attention of people from all the ground
truth locations at more or less the same rate.

Hence, we need to be careful while selecting the similarity
threshold for these two types of events. In case of SE events,
almost all the clusters can be expected to have high similarity
among the popular tags, whereas the ME events may not
share the popular tags across all the clusters. This means
we might have to set a really low threshold value for SE
events but a relatively higher threshold value for ME events.
Based on the observations from tables I and II, we use the
size of the ordered clusters as a function to determine the
threshold value. A huge drop in size from first cluster (E1) to
second cluster (E2) signifies a single entity event and thus
threshold = len(E2)

len(E1)
assigns a really small score. At the

same time this score will be much larger in case of multiple
entities events due to comparable cluster sizes. This function
for assigning the score also satisfies the bounding range for
similarity score [0, 1]. Algorithm 1 is the pseudo code for the
steps that have been described so far.

Algorithm 1 Localization Algorithm
1: procedure LOCALIZE(< lk, tik, ujk, tagik >,K)
2: orderList← sort(lk, ujk, tik)
3: events← []
4: count = 1
5: for lk ∈ orderList do
6: D ← distribution(lk, tik)
7: tstart k = D(quartile1)
8: tend k = D(quartile3)
9: if count == 1 then

10: event[peak] = D(mode)
11: event[start] = tstart k
12: event[end] = tend k
13: event[prime] = lk
14: insert(events, event)
15: else
16: for event ∈ events do
17: if overlap(lk, event,R) == True then
18: event[support] = lk
19: else
20: event[peak] = D(mode)
21: event[start] = tstart k
22: event[end] = tend k
23: event[prime] = lk
24: insert(events, event)

25: count = count+ 1
26: n← len(events)
27: for i ∈ (1, n) do
28: vectori = get tags(events[i])
29: for j ∈ (i+ 1, n) do
30: vectorj = get tags(events[j])
31: if similarity(vectori, vectorj) > θ then
32: remove(events[j])

D. Timeline Interface

The last component in the pipeline is the timeline-based
visualization on a map interface. A timeline slider is provided
that lets the user to jump to a particular date in order to view
the corresponding events. The interface shows pins for each
event that have been localized by our algorithm. Figure 2 is
an example map interface for localized marathon events on
10/18/15.



Fig. 2. Timeline map based interface

V. EVALUATION

In this section, we first describe the various real-world
datasets that we collected using the Instagram API. With
the help of these datasets, we verify the assumptions from
Category 2 that were presented earlier in this paper and
then finally show the comparison of the performance of our
algorithm against a few baseline methods for localizing events.

A. Collected Datasets

1) Dataset 1 - Taylor Swift Music Tour: Taylor Swift, one
of the most popular American singers, conducted a music
concert tour called The 1989 World Tour in various cities
across the world. We collected the complete set of Instagram
posts related to this tour using the hashtag #1989worldtour
starting from May 5, 2015, until December 12, 2015. We
evaluate a total of 28 events spanning across the last three
months of the event tour that happened in various cities in
United States, Canada, Asia and Southeast Asia, and Australia.
The ground-truth locations for all the events were obtained
from the Wikipedia page [24] associated with the tour.

2) Dataset 2 - Maroon V Music Tour: The Maroon V Tour
is a music concert tour by the popular American band Maroon
V. We collected the Instagram posts related to this tour using
the hashtag #maroonvtour starting from February 16, 2015,
until October 4, 2015. We evaluate a total of 17 events from
the months of September and October spanning different cities
in south east Asia and Australia. The ground-truth locations
for all the events were obtained from a Wikipedia page [25]
associated with the tour.

3) Dataset 3 - Marathons: According to the 2014 annual
marathon report [26], more than 1, 100 races were completed
across the United States, making it one of the most popular
urban sporting events. For the purpose of evaluating our work,
we considered the top 30 cities in the United States, ranked by
population [27] that hosted a popular marathon [28] during the
fall of 2015. Based on this filtering, we identified five major
events, listed in table III.

TABLE III. LIST OF MAJOR US MARATHONS, FALL 2015

Event City Marathon Date
1 Chicago Bank of America Marathon Oct 11

2 Baltimore The Under Armour Marathon Oct 17

3 Washington D.C. Marine Corps Marathon Oct 25

4 NY City TCS Marathon Nov 1

5 Las Vegas Rock n Roll Marathon Nov 15

Instagram posts related to marathon events were collected
using the hashtag #marathon. It is important to note that
this search query tag is not targeted towards a particular entity
such as a name (Maroon V) as in the case of previous datasets.
Thus, this data set is much more “noisy” compared to others,
making it a very interesting case to consider.

4) Dataset 4 - Tornadoes: The number of fatalities caused
by tornadoes in the United States during the year 2015 [29]
is estimated at 480, an exponential increase compared to 54
recorded during 2014. The strength of a tornado is computed
using the EF scale ranging between [0, 5] based on the damage
caused. In 2015 (Jan - Oct), there were no EF5 tornadoes,
while the count of EF4 was 2 and EF3 was 8. The EF3
tornadoes have mostly occurred in rural areas with populations
less than 5, 000, except for one urban location. Instagram
posts related to tornadoes were collected using the hashtag
#tornado. Table IV lists the filtered set of tornadoes that
caused severe fatality in urban areas.

TABLE IV. LIST OF FATAL TORNADOES, 2015 (JAN-OCT)

Event City EF Date
1 Rochelle, IL, USA 4 April 9, 2015

2 Oklahoma City, OK, USA 3 May 6, 2015

3 Venice, Italy 4 July 8, 2015

B. Verification of assumptions from Category 2

Before we present the performance results of our localiza-
tion algorithm, we demonstrate the validity of the assumptions
that were made earlier while deriving the algorithm. Specifi-
cally, we focus on Category 2 assumptions that can be verified
with the help of experiments using the datasets collected.

1) Validation 1: In figure 3, we show the distribution of
unique users present in True versus the False clusters for fifteen
events that were randomly selected from the output of our
localization algorithm using the collected datasets. The x-axis
represents the event ID while the y-axis represents the fraction
of users who posted images for that particular event. This
figure validates two assumptions at the same time. Firstly, we
can see that there are some groups of users who are located at
places other than the actual event location (Assumption 5), and
secondly, the fraction of users from the True location is always
greater than the False location for the same event (Assumption
6).

2) Validation 2: In figure 4, we verify Assumption 8 using
the same random fifteen events that were selected for validation
1. For each event, we first identify the top 10 commonly used
tags according to frequency (we remove the tag word used
for search query) from both True and False clusters. Next, we
determine the similarity between the True cluster vector with
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each of the corresponding False cluster vector and take the
average score. Figure 4 shows the boxplot representation for
the average similarity scores that were obtained for the random
samples. It is evident that the median of these scores is around
0.65 and the minimum score is well above 0.5. Thus, there
exists some amount of prevalence of common tags between
the True and False clusters of the same event.
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3) Validation 3: Finally, we select four random event sam-
ples from each of the two categories (Planned and Unplanned)
to plot the distribution of the frequency of images shared form
the True location in order to verify our Assumption 7. For
these plots, the x-axis represents the timestamp ID and y-
axis represents the frequency of images that were shared for a
particular time interval. Figure 5 consists of four subplots for
planned events in which users start posting images well ahead
of scheduled time and there is a peak around the time when the
event actually takes place. Figure 6 consists of four subplots
for unplanned events in which there is a peak observed right
after the event and then it gradually falls down over a period
of time. Hence, for either case, we established the fact that
users tend to maximize the observation very close to the event
occurrence.

C. Performance of our Localization Algorithm

With the establishment of the validity of the assumptions
that we made in order to derive our localization algorithm,
we now compare the performance of the results against a
few baseline methods using different metrics. The baselines

and the metrics are discussed in detail below followed by the
comparison tables.

1) Baseline Method 1 - Tag Similarity Localization: The
first baseline method is based on the intuition that all the
observations for an event are closely linked to each other in
terms of common tags used for description (this is according to
our Assumption 8). We follow the same processing method for
the incoming feed of data using the crawler. For any current
interval, we consider all the unique K locations (l1, l2, . . . , lk)
along with the associated < tik, ujk, tagik >. We then form
a cluster by grouping all the l’s for which the similarity score
among the top 10 common tag words is at least X%. We vary
the value of X as 20, 40, 60, and 80 respectively. For each
case, we use the same false alarm cluster elimination technique
as described in our own algorithm. The higher the threshold
for grouping locations, the better the results will be.

2) Baseline Method 2 - Geo Event Detection: For the
second baseline method, we use the work described by the
authors of [23] for geographical social event detection in social
media. This work is very closely related to our motivation in
terms of using geo-tagged data to detect events. We implement
their algorithm as mentioned to detect the events on our
collected datasets. Specifically, we do per day analysis for the
four time slots on each geographic region present for that day.
A region comprises of geo-coordinate with maximum number
of users and all points within 30 miles of radius from it. There
is a threshold requirement for abnormal geographic regions.
We vary this θ value as 0.2, 0.4, 0.6 and 0.8 to see the effect
on localization. The minimum number of observations required
in a cluster is set as 3.

3) Baseline Method 3 - Points of Interest: For the third
baseline, we use the work described by the authors of [5] in
order to find points of interests using pictures shared by users
on the Instagram network. This work can be very well applied
to our interest of finding the locations of events. However, the
authors conducted the experiments on very popular locations.
Thus, we again set the minimum number of observation
required in a cluster as 3 and use the approach as described
in the paper.

4) Metrics for comparison: We use three metrics in order
to compare the performance of our localization algorithm
against the selected baseline methods:

• Recall : Determines the count of events that were detected
and localized from the available set of events.

• False Positives (FP): Determines the count of events that
were falsely classified as positive.

• Average Localization Error (ALE) : Determines the aver-
age error in the estimated location from the actual ground
truth for all the localized events.

Table V is the recall value comparison between our lo-
calization algorithm and the baseline methods under different
settings. Our method performed consistently well in correctly
identifying all the events. Baseline 2 method also gave a perfect
recall.

Table VI is the false positives value comparison between
our localization algorithm and the baseline methods under
different settings. It can be clearly seen that our method
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TABLE V. RECALL

Dataset
Our

Localization
Algorithm

Tag Similarity Localization Geo Event Detection [23] Points of
Interest [5]

X =
20%

X =
40%

X =
60%

X =
80%

θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

Taylor
Swift 28/28 24/28 25/28 26/28 26/28 28/28 28/28 28/28 28/28 27/28

Maroon
V 17/17 13/17 15/17 17/17 17/17 17/17 17/17 17/17 17/17 17/17

Marathon 5/5 3/5 4/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5

Tornado 3/3 2/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

TABLE VI. FALSE POSITIVES

Dataset
Our

Localization
Algorithm

Tag Similarity Localization Geo Event Detection [23] Points of
Interest [5]

X =
20%

X =
40%

X =
60%

X =
80%

θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

Taylor
Swift 2 18 10 5 4 35 16 9 9 26

Maroon
V 0 5 4 4 2 19 8 8 8 14

Marathon 0 16 10 7 6 17 11 11 11 15

Tornado 1 3 3 3 2 6 6 6 6 19

generated the least number of false alarm clusters for any
dataset.

Table VII is the ALE comparison between our localization
algorithm and the baseline methods under different settings. It
can be clearly seen that our method has the best average error
rate for the estimated location from the actual ground truth.
In case of first two datasets (which are immobile events), the
average error is almost close to zero, but for the other two
datasets (mobile events), the average error is close to 6 miles
in worst case.

VI. CONCLUSIONS

This paper presents an algorithm for localizing urban events
using geo-tagged media from the Instagram social network.
The motivation for this work comes from the fact that the
spatio-temporal behavior of events varies from one type to
another leading to two main challenges : determining a way
to identify events using the geo-tagged data within an interval
and reducing false alarm indicators. The first one is solved with

the help of a clustering technique based on the distribution of
the images (observations) in both time and spatial domains. We
provide an adaptive way to maximize the best set of clusters
generated. The second challenge is solved by considering
similarity between clusters to minimize the false positives.
In order to derive an algorithm to solve these problems,
we provide a set of assumptions, which are later verified
using experimental results. For evaluation, we consider three
baseline methods and compare the results with our localization
algorithm. The results show that we outperform the baseline
methods for all the three metrics considered for comparison.
Also we achieved this result without the need to tune any
manual parameter in our algorithm.
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