346 research outputs found
Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs
A new scoring system, the Basic Erosive Wear Examination (BEWE), has been designed to provide a simple tool for use in general practice and to allow comparison to other more discriminative indices. The most severely affected surface in each sextant is recorded with a four level score and the cumulative score classified and matched to risk levels which guide the management of the condition. The BEWE allows re-analysis and integration of results from existing studies and, in time, should initiate a consensus within the scientific community and so avoid continued proliferation of indices. Finally, this process should lead to the development of an internationally accepted, standardised and validated index. The BEWE further aims to increase the awareness of tooth erosion amongst clinicians and general dental practitioners and to provide a guide as to its management
Effect of a chitosan additive to a Sn2+-containing toothpaste on its anti-erosive/anti-abrasive efficacy—a controlled randomised in situ trial
Objectives: It is well known that Sn2+ is a notable anti-erosive agent. There are indications that biopolymers such as chitosan can enhance the effect of Sn2+, at least in vitro. However, little information exists about their anti-erosive/anti-abrasive in situ effects. In the present in situ study, the efficacy of Sn2+-containing toothpastes in the presence or absence of chitosan was tested. Methods: Ten subjects participated in the randomised crossover study, wearing mandibular appliances with human enamel specimens. Specimens were extraorally demineralised (7days, 0.5% citric acid, pH 2.6; 6 × 2min/day) and intraorally exposed to toothpaste suspensions (2 × 2min/day). Within the suspension immersion time, one half of the specimens were additionally brushed intraorally with a powered toothbrush (5s, 2.5N). Tested preparations were a placebo toothpaste (negative control), two experimental toothpastes (F/Sn = 1,400ppm F−, 3,500ppm Sn2+; F/Sn/chitosan = 1,400ppm F−, 3,500ppm Sn2+, 0.5% chitosan) and an SnF2-containing gel (positive control, GelKam = 3,000ppm Sn2+, 1,000ppm F−). Substance loss was quantified profilometrically (μm). Results: In the placebo group, tissue loss was 11.2 ± 4.6 (immersion in suspension) and 17.7 ± 4.7 (immersion in suspension + brushing). Immersion in each Sn2+-containing suspension significantly reduced tissue loss (p ≤ 0.01); after immersion in suspension + brushing, only the treatments with GelKam (5.4 ± 5.5) and with F/Sn/chitosan (9.6 ± 5.6) significantly reduced loss [both p ≤ 0.05 compared to placebo; F/Sn 12.8 ± 6.4 (not significant)] Conclusion: Chitosan enhanced the efficacy of the Sn2+-containing toothpaste as an anti-erosive/anti-abrasive agent. Clinical relevance: The use of Sn2+- and chitosan-containing toothpaste is a good option for symptomatic therapy in patients with regular acid impacts
UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation
UVB irradiation has been linked to pathogenesis of pterygium, a conjunctival tumor growing onto transparent cornea, the windscreen of the eye. Due to corneal anatomy, ambient UVB irradiation is amplified at the stem cell-containing nasal limbus. The aim of this study was to analyse the effect of a UV-blocking contact lens (UVBCL, senofilcon A, Class 1 UV blocker) on limbal epithelial cells and fibroblasts under UVB irradiation compared to a non-UVB-blocking contact lens. UVBCL prevented UVB-induced DNA damage (as assessed by cyclobutane pyrimidine dimer immunostaining) as well as a decrease in proliferation and scratch wound closure rate of both limbal epithelial and fibroblast cells. Similarly, UVBCL protected limbal epithelial cells from UVB-induced loss of their phenotype in terms of colony forming efficiency and stem cell marker expression (ABCB5, P63α, integrin β1) compared to controls. Moreover, with UVBCL pro-inflammatory cytokines such as TNFα and MCP1 remained unchanged. These data demonstrate the significance of UV-protection in preserving the limbal niche in response to at least short-term UVB. Our data support the use of UVBCL in protecting limbal niche cells, especially after limbal stem cell transplantation and in patients after pterygium surgery, to help prevent recurrences
UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation
UVB irradiation has been linked to pathogenesis of pterygium, a conjunctival tumor growing onto transparent cornea, the windscreen of the eye. Due to corneal anatomy, ambient UVB irradiation is amplified at the stem cell-containing nasal limbus. The aim of this study was to analyse the effect of a UV-blocking contact lens (UVBCL, senofilcon A, Class 1 UV blocker) on limbal epithelial cells and fibroblasts under UVB irradiation compared to a non-UVB-blocking contact lens. UVBCL prevented UVB-induced DNA damage (as assessed by cyclobutane pyrimidine dimer immunostaining) as well as a decrease in proliferation and scratch wound closure rate of both limbal epithelial and fibroblast cells. Similarly, UVBCL protected limbal epithelial cells from UVB-induced loss of their phenotype in terms of colony forming efficiency and stem cell marker expression (ABCB5, P63α, integrin β1) compared to controls. Moreover, with UVBCL pro-inflammatory cytokines such as TNFα and MCP1 remained unchanged. These data demonstrate the significance of UV-protection in preserving the limbal niche in response to at least short-term UVB. Our data support the use of UVBCL in protecting limbal niche cells, especially after limbal stem cell transplantation and in patients after pterygium surgery, to help prevent recurrences
Is diagnosing exposed dentine a suitable tool for grading erosive loss?
Quantifying tooth wear in general and erosion in particular mostly is made by distinguishing between lesions restricted to enamel and lesions reaching the underlying dentine. Various scores for grading have been used, but in all systems, higher scores are given in cases of exposed dentine, thus, indicating a more severe stage of the condition. Clinical diagnosis of exposed dentine is made by assessing changes in colour or optical properties of the hard tissues. This paper aims to review the literature and discuss critically problems arising form this approach. It appears that classifying the severity of erosion by the area or depth of exposed dentine is difficult and poorly reproducible, and taking into account the variation of enamel thickness, the amount of tissue lost often is not related simply to the area of exposed dentine. There has still been very little longitudinal investigation of the significance of exposed dentine as a prognostic indicator. Further work and discussion is needed to reevaluate the explanative power of current grading procedures
Consecutive dosing of UVB irradiation induces loss of ABCB5 expression and activation of EMT and fibrosis proteins in limbal epithelial cells similar to pterygium epithelium
Pterygium pathogenesis is often attributed to a population of altered limbal stem cells, which initiate corneal invasion and drive the hyperproliferation and fibrosis associated with the disease. These cells are thought to undergo epithelial to mesenchymal transition (EMT) and to contribute to subepithelial stromal fibrosis. In this study, the presence of the novel limbal stem cell marker ABCB5 in clusters of basal epithelial pterygium cells co-expressing with P63α and P40 is reported. ABCB5-positive pterygium cells also express EMT-associated fibrosis markers including vimentin and α-SMA while their β-catenin expression is reduced. By using a novel in vitro model of two-dose UV-induced EMT activation on limbal epithelial cells, we could observe the dysregulation of EMT-related proteins including an increase of vimentin and α-SMA as well as downregulation of β-catenin in epithelial cells correlating to downregulation of ABCB5. The sequential irradiation of limbal fibroblasts also induced an increase in vimentin and α-SMA. Taken together, these data demonstrate for the first time the expression of ABCB5 in pterygium stem cell activity and EMT-related events while the involvement of limbal stem cells in pterygium pathogenesis is exhibited via sequential irradiation of limbal epithelial cells. The later in vitro approach can be used to further study the involvement of limbal epithelium UV-induced EMT in pterygium pathogenesis and help identify novel treatments against pterygium growth and recurrence
How valid are current diagnostic criteria for dental erosion?
In principle, there is agreement about the clinical diagnostic criteria for dental erosion, basically defined as cupping and grooving of the occlusal/incisal surfaces, shallow defects on smooth surfaces located coronal from the enamel–cementum junction with an intact cervical enamel rim and restorations rising above the adjacent tooth surface. This lesion characteristic was established from clinical experience and from observations in a small group of subjects with known exposure to acids rather than from systematic research. Their prevalence is higher in risk groups for dental erosion compared to subjects not particularly exposed to acids, but analytical epidemiological studies on random or cluster samples often fail to find a relation between occurrence or severity of lesions and any aetiological factor. Besides other aspects, this finding might be due to lack of validity with respect to diagnostic criteria. In particular, cupping and grooving might be an effect of abrasion as well as of erosion and their value for the specific diagnosis of erosion must be doubted. Knowledge about the validity of current diagnostic criteria of different forms of tooth wear is incomplete, therefore further research is needed
TiF4 and NaF varnishes as anti-erosive agents on enamel and dentin erosion progression in vitro
Objective This study assessed the effect of fluoride varnishes on the progression of tooth erosion in vitro. Material and Methods: Forty-eight enamel and 60 root dentin samples were previously demineralized (0.1% citric acid, pH 2.5, 30 min), leading to a baseline and erosive wear of 12.9 and 11.4 µm, respectively. The samples were randomly treated (6 h) with a 4% TiF4 varnish (2.45%F-, pH 1.0), a 5.42% NaF varnish (2.45%F-, pH 5.0), a placebo varnish and no varnish (control). The samples were then subjected to erosive pH cycles (4x90 s/day in 0.1% citric acid, intercalated with artificial saliva) for 5 days. The increment of the erosive tooth wear was calculated. In the case of dentin, this final measurement was done with and without the demineralized organic matrix (DOM). Enamel and dentin data were analyzed using ANOVA/Tukey’s and Kruskal-Wallis/Dunn tests, respectively (p<0.05). Results The TiF4 (mean±s.d: 1.5±1.1 µm) and NaF (2.1±1.7 µm) varnishes significantly reduced enamel wear progression compared to the placebo varnish (3.9±1.1 µm) and control (4.5±0.9 µm). The same differences were found for dentin in the presence and absence of the DOM, respectively: TiF4 (average: 0.97/1.87 µm), NaF (1.03/2.13 µm), placebo varnish (3.53/4.47 µm) and control (3.53/4.36 µm). Conclusion The TiF4 and NaF varnishes were equally effective in reducing the progression of tooth erosion in vitro
- …