6 research outputs found

    The essential roles of cytidine diphosphate-diacylglycerol synthase in bloodstream form Trypanosoma brucei

    Get PDF
    Funded by Wellcome Trust: Senior Research Fellowship, Grant Number: 067441 and Wellcome Trust, Grant Numbers: 082596, 093228.Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP-DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP-DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/ EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non-viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell-cycle arrest due in part to kinetoplast segregation defects.Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesised via the phosphatidylglycerol-phosphate synthase is not synthesised from CDP-DAG, as was previously thought. TbCDS was shown to localised the ER and Golgi, probably to provide CDP-DAG for the phosphatidylinositol synthases.Publisher PDFPeer reviewe

    Insertion Of Escherichia Coli Alpha-Haemolysin In Lipid Bilayers As A Non-Transmembrane Integral Protein: Prediction And Experiment

    Full text link
    alpha-Haemolysin is an extracellular protein toxin (approximately 107 kDa) secreted by Escherichia coli that acts at the level of the plasma membranes of target eukaryotic cells. The nature of the toxin interaction with the membrane is not known at present, although it has been established that receptor-mediated binding is not essential. In this work, we have studied the perturbation produced by purified alpha-haemolysin on pure phosphatidylcholine bilayers in the form of large unilamellar vesicles, under conditions in which the toxin has been shown to induce vesicle leakage. The bilayer systems containing bound protein have been examined by differential scanning calorimetry, fluorescence spectroscopy, differential solubilization by Triton X-114, and freeze-fracture electron microscopy. All the data concur in indicating that alpha-haemolysin, under conditions leading to cell lysis, becomes inserted in the target membrane in the way of intrinsic or integral proteins. In addition, the experimental results support the idea that inserted alpha-haemolysin occupies only one of the membrane phospholipid monolayers, i.e. it is not a transmembrane protein. The experimental data are complemented by structure prediction studies according to which as many as ten amphipathic alpha-helices, appropriate for protein-lipid interaction, but no hydrophobic transmembrane helices are predicted in alpha-haemolysin. These observations and predictions have important consequences for the mechanism of cell lysis by alpha-haemolysin; in particular, a non-transmembrane arrangement of the toxin in the target membrane is not compatible with the concept of alpha-haemolysin as a pore-forming toxin

    Phosphoinositide-dependent perimembrane mechanisms of regulating cellular processes

    No full text
    corecore