41 research outputs found

    Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing

    Get PDF
    The most enriched pathways that were identified for the target genes. A total of 53 most enriched pathways of target gene annotated in this study. (XLS 41 kb

    Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4

    Get PDF
    CITATION: Liu, S. et al. 2020. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytologist, 225:913–929, doi:10.1111/nph.16193.The original publication is available at https://nph.onlinelibrary.wiley.comFusaric acid (FSA) is a phytotoxin produced by several Fusarium species and has been associated with plant disease development, although its role is still not well understood. Mutation of key genes in the FSA biosynthetic gene (FUB) cluster in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) reduced the FSA production, and resulted in decreased disease symptoms and reduced fungal biomass in the host banana plants. When pretreated with FSA, both banana leaves and pseudostems exhibited increased sensitivity to Foc TR4 invasion. Banana embryogenic cell suspensions (ECSs) treated with FSA exhibited a lower rate of O2 uptake, loss of mitochondrial membrane potential, increased reactive oxygen species (ROS) accumulation, and greater nuclear condensation and cell death. Consistently, transcriptomic analysis of FSA-treated ECSs showed that FSA may induce plant cell death through regulating the expression of genes involved in mitochondrial functions. The results herein demonstrated that the FSA from Foc TR4 functions as a positive virulence factor and acts at the early stage of the disease development before the appearance of the fungal hyphae in the infected tissues.https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16193Publisher's versio

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    Progress in Protein Interactomics Technologies and Their Applications to Plants Research

    No full text
    Protein interactomics is a cutting-edge technology to identify and quantify the interaction of proteins with other metabolites or molecules like proteins, which has been an important part of plant systems biology and multi-omics research. In recent years, the rapid development of mass spectrometry-based omics technologies has facilitated great progress in methodologies for discovery and verification of the protein-metabolite interaction (PMI) and protein-protein interaction (PPI), which are the main protein interactomic technologies, showing great potential for applications in plant functional genomic and metabolomic studies gradually. Here, we present a systematic overview of the analysis strategies of different protein interactomics technologies (including PMI and PPI) in the past decade and analyze their advantages, disadvantages and specific applicable interaction types. The application progress and application strategies of protein interactomics technologies in plant research and the key technical bottlenecks that need to be overcome are also summarized. In the near future, the continuous development of interactomics technologies will further leverage the analysis of intracellular signal transduction and metabolic regulatory pathways in plants, and precise analysis of key interactions in signal networks will provide important information for the studies of the growth and development of plants and their adaptation to external environment

    MaHAK5, a Potassium Transporter of Banana, Enhanced Potassium Uptake in Transgenic <i>Arabidopsis</i> under Low Potassium Conditions

    No full text
    Potassium (K+) is one of the most important macronutrients for plant growth and development. It is generally accepted that the KUP/HAK/KT transporters play essential roles in K+ uptake at low concentrations. However, their physiological functions in bananas remain unknown. Here, we cloned MaHAK5 and analyzed its functions in banana (Musa acuminata). Gene expression analysis showed that MaHAK5 was upregulated in the roots and leaves in the early stage of low K+ (LK) stress. MaHAK5 was localized in the cytomembrane. The expression of MaHAK5 improved the growth of the low K+-sensitive yeast mutant R5421 at different K+ supply levels. Overexpression of MaHAK5 in Arabidopsis thaliana significantly enhanced the ability for K+ uptake and increased the chlorophyll content under LK stress. These results indicate that MaHAK5 plays a crucial role in maintaining K+ uptake in bananas

    Additional file 3: of Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing

    No full text
    Detailed information on the identified novel miRNAs. Novel miRNAs identified in three libraries. miRNA ID, length, sequence, location, MFE for precursor miRNA, structure of precursor, and total reads for mature miRNA are listed (XLSX 1228 kb

    Drug Combinations to Prevent Antimicrobial Resistance: Various Correlations and Laws, and Their Verifications, Thus Proposing Some Principles and a Preliminary Scheme

    No full text
    Antimicrobial resistance (AMR) has been a serious threat to human health, and combination therapy is proved to be an economic and effective strategy for fighting the resistance. However, the abuse of drug combinations conversely accelerates the spread of AMR. In our previous work, we concluded that the mutant selection indexes (SIs) of one agent against a specific bacterial strain are closely related to the proportions of two agents in a drug combination. To discover probable correlations, predictors and laws for further proposing feasible principles and schemes guiding the AMR-preventing practice, here, three aspects were further explored. First, the power function (y = axb, a &gt; 0) correlation between the SI (y) of one agent and the ratio (x) of two agents in a drug combination was further established based on the mathematical and statistical analyses for those experimental data, and two rules a1 &times; MIC1 = a2 &times; MIC2 and b1 + b2 = &minus;1 were discovered from both equations of y = a1xb1 and y = a2xb2 respectively for two agents in drug combinations. Simultaneously, it was found that one agent with larger MPC alone for drug combinations showed greater potency for narrowing itself MSW and preventing the resistance. Second, a new concept, mutation-preventing selection index (MPSI) was proposed and used for evaluating the mutation-preventing potency difference of two agents in drug combination; a positive correlation between the MPSI and the mutant prevention concentration (MPC) or minimal inhibitory concentration (MIC) was subsequently established. Inspired by this, the significantly positive correlation, contrary to previous reports, between the MIC and the corresponding MPC of antimicrobial agents against pathogenic bacteria was established using 181 data pairs reported. These results together for the above three aspects indicate that the MPCs in alone and combination are very important indexes for drug combinations to predict the mutation-preventing effects and the trajectories of collateral sensitivity, and while the MPC of an agent can be roughly calculated from its corresponding MIC. Subsequently, the former conclusion was further verified and improved via antibiotic exposure to 43 groups designed as different drug concentrations and various proportions. The results further proposed that the C/MPC for the agent with larger proportion in drug combinations can be considered as a predictor and is the key to judge whether the resistance and the collateral sensitivity occur to two agents. Based on these above correlations, laws, and their verification experiments, some principles were proposed, and a diagram of the mutation-preventing effects and the resistant trajectories for drug combinations with different concentrations and ratios of two agents was presented. Simultaneously, the reciprocal of MPC alone (1/MPC), proposed as the stress factors of two agents in drug combinations, together with their SI in combination, is the key to predict the mutation-preventing potency and control the trajectories of collateral sensitivity. Finally, a preliminary scheme for antimicrobial combinations preventing AMR was further proposed for subsequent improvement research and clinic popularization, based on the above analyses and discussion. Moreover, some similar conclusions were speculated for triple or multiple drug combinations
    corecore