147 research outputs found
FuncPEP v20: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs
Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality
Association of CpG island methylator phenotype and EREG/AREG methylation and expression in colorectal cancer
BACKGROUND: High EREG and AREG expression, and left-sided primary tumours are associated with superior efficacy of anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (CRC), but a unifying explanation of these findings is lacking.
METHODS: RNA-seq, gene expression arrays, and DNA methylation profiling were completed on 179 CRC tumours. Results were validated using independent The Cancer Genome Atlas data sets. An independent cohort of 198 KRAS wild-type metastatic CRC tumours was tested for CpG island methylator phenotype (CIMP) status, and progression-free survival (PFS) with the first anti-EGFR regimen was retrospectively determined.
RESULTS: EREG and AREG expression was highly inversely correlated with methylation and was inversely associated with right-sided primary tumour, BRAF mutation, and CIMP-high status. Treatment of CRC cell lines with hypomethylating agents decreased methylation and increased expression of EREG. Inferior PFS with anti-EGFR therapy was associated with CIMP-high status, BRAF mutation, NRAS mutation, and right-sided primary tumour on univariate analysis. Among known BRAF/NRAS wild-type tumours, inferior PFS remained associated with CIMP-high status (median PFS 5.6 vs 9.0 mo, P=0.023).
CONCLUSIONS: EREG and AREG are strongly regulated by methylation, and their expression is associated with CIMP status and primary tumour site, which may explain the association of primary tumour site and EREG/AREG expression with anti-EGFR therapy efficacy
Autologous Humanized Mouse Models To Study Combination and Single-Agent Immunotherapy for Colorectal Cancer Patient-Derived Xenografts
Designing studies of immunotherapy is limited due to a lack of pre-clinical models that reliably predict effective immunotherapy responses. To address this gap, we developed humanized mouse models of colorectal cancer (CRC) incorporating patient-derived xenografts (PDX) with human peripheral blood mononuclear cells (PBMC). Humanized mice with CRC PDXs were generated via engraftment of autologous (isolated from the same patients as the PDXs) or allogeneic (isolated from healthy donors) PBMCs. Human T cells were detected in mouse blood, tissues, and infiltrated the implanted PDXs. The inclusion of anti-PD-1 therapy revealed that tumor responses in autologous but not allogeneic models were more comparable to that of patients. An overall non-specific graft-vs-tumor effect occurred in allogeneic models and negatively correlated with that seen in patients. In contrast, autologous humanized mice more accurately correlated with treatment outcomes by engaging pre-existing tumor specific T-cell populations. As autologous T cells appear to be the major drivers of tumor response thus, autologous humanized mice may serve as models at predicting treatment outcomes in pre-clinical settings for therapies reliant on pre-existing tumor specific T-cell populations
SETD2 Loss and ATR Inhibition Synergize to Promote cGAS Signaling and Immunotherapy Response in Renal Cell Carcinoma
PURPOSE: Immune checkpoint blockade (ICB) demonstrates durable clinical benefits in a minority of patients with renal cell carcinoma (RCC). We aimed to identify the molecular features that determine the response and develop approaches to enhance it.
EXPERIMENTAL DESIGN: We investigated the effects of SET domain-containing protein 2 (SETD2) loss on the DNA damage response pathway, the cytosolic DNA-sensing pathway, the tumor immune microenvironment, and the response to ataxia telangiectasia and rad3-related (ATR) and checkpoint inhibition in RCC.
RESULTS: ATR inhibition activated the cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3)-dependent cytosolic DNA-sensing pathway, resulting in the concurrent expression of inflammatory cytokines and immune checkpoints. Among the common RCC genotypes, SETD2 loss is associated with preferential ATR activation and sensitizes cells to ATR inhibition. SETD2 knockdown promoted the cytosolic DNA-sensing pathway in response to ATR inhibition. Treatment with the ATR inhibitor VE822 concurrently upregulated immune cell infiltration and immune checkpoint expression in Setd2 knockdown Renca tumors, providing a rationale for ATR inhibition plus ICB combination therapy. Setd2-deficient Renca tumors demonstrated greater vulnerability to ICB monotherapy or combination therapy with VE822 than Setd2-proficient tumors. Moreover, SETD2 mutations were associated with a higher response rate and prolonged overall survival in patients with ICB-treated RCC but not in patients with non-ICB-treated RCC.
CONCLUSIONS: SETD2 loss and ATR inhibition synergize to promote cGAS signaling and enhance immune cell infiltration, providing a mechanistic rationale for the combination of ATR and checkpoint inhibition in patients with RCC with SETD2 mutations
Effective combinatorial immunotherapy for penile squamous cell carcinoma
Penile squamous cell carcinoma (PSCC) accounts for over 95% of penile malignancies and causes significant mortality and morbidity in developing countries. Molecular mechanisms and therapies of PSCC are understudied, owing to scarcity of laboratory models. Herein, we describe a genetically engineered mouse model of PSCC, by co-deletion of Smad4 and Apc in the androgen-responsive epithelium of the penis. Mouse PSCC fosters an immunosuppressive microenvironment with myeloid-derived suppressor cells (MDSCs) as a dominant population. Preclinical trials in the model demonstrate synergistic efficacy of immune checkpoint blockade with the MDSC-diminishing drugs cabozantinib or celecoxib. A critical clinical problem of PSCC is chemoresistance to cisplatin, which is induced by Pten deficiency on the backdrop of Smad4/Apc co-deletion. Drug screen studies informed by targeted proteomics identify a few potential therapeutic strategies for PSCC. Our studies have established what we believe to be essential resources for studying PSCC biology and developing therapeutic strategies
Peningkatan Prestasi Belajar CAD Mahasiswa Teknik Otomotif Non-Reguler FT UNY melalui Pembuatan “Pohon Kata” Perintah dalam Program AutoCAD
Penelitian ini bertujuan meningkatkan prestasi belajar mata kuliah Computer Aided Design (CAD) mahasiswa prodi Teknik Otomotif Non-Reguler yang dinyatakan dalam bentuk rerata nilai akhir semester yang berasal dari komponen nilai tugas harian, nilai ujian tengah semester dan nilai ujian akhir semester. Penelitian quasi-eksperimen ini terdiri dari tahapan penelitian diawali dengan penyusunan materi pembelajaran sejumlah pokok bahasan tertentu dalam satu job sheet (lembar kerja), dilanjutkan dengan pembuatan bantuan “Pohon Kata” perintah dalam Auto CAD kepada kelas eksperimen yang ditentukan secara random dari dua kelas peserta kuliah Auto CAD pada Semester Genap 2008/2009. Kedua kelas diamati prestasinya, baik kecepatan penyelesaiannya maupun kualitas kebenaran gambarnya. Prestasi belajar kedua kelas juga diukur melalui pemberian ujian tengah semester dan ujian akhir semester. Setelah data prestasi kedua kelas terkumpul dilanjutkan dengan analisis statistik melalui uji beda (t-test) setelah sebelumnya dilakukan uji persyaratan analisis yang ternyata dapat dipenuhi. Hasil penelitian ini disimpulkan bahwa: prestasi belajar CAD mahasiswa pada kelas yang diberi perlakuan strategi pembelajaran menggunakan “Pohon Kata” perintah dalam Program Auto CAD lebih baik dibanding prestasi belajar CAD mahasiswa pada kelas yang tidak diberi perlakuan (75,41>70,89), dengan demikian pembelajaran CAD menggunakan media “Pohon Kata” perintah dalam Program Auto CAD dapat meningkatkan prestasi belajar mahasiswa Teknik Otomotif Program Non-Reguler
CRISPR-Cas9-Based Functional Interrogation of Unconventional Translatome Reveals Human Cancer Dependency on Cryptic Non-Canonical Open Reading Frames
Emerging evidence suggests that cryptic translation beyond the annotated translatome produces proteins with developmental or physiological functions. However, functions of cryptic non-canonical open reading frames (ORFs) in cancer remain largely unknown. To fill this gap and systematically identify colorectal cancer (CRC) dependency on non-canonical ORFs, we apply an integrative multiomic strategy, combining ribosome profiling and a CRISPR-Cas9 knockout screen with large-scale analysis of molecular and clinical data. Many such ORFs are upregulated in CRC compared to normal tissues and are associated with clinically relevant molecular subtypes. We confirm the in vivo tumor-promoting function of the microprotein SMIMP, encoded by a primate-specific, long noncoding RNA, the expression of which is associated with poor prognosis in CRC, is low in normal tissues and is specifically elevated in CRC and several other cancer types. Mechanistically, SMIMP interacts with the ATPase-forming domains of SMC1A, the core subunit of the cohesin complex, and facilitates SMC1A binding to cis-regulatory elements to promote epigenetic repression of the tumor-suppressive cell cycle regulators encoded by CDKN1A and CDKN2B. Thus, our study reveals a cryptic microprotein as an important component of cohesin-mediated gene regulation and suggests that the \u27dark\u27 proteome, encoded by cryptic non-canonical ORFs, may contain potential therapeutic or diagnostic targets
An efficient algorithm for systematic analysis of nucleotide strings suitable for siRNA design
<p>Abstract</p> <p>Background</p> <p>The "off-target" silencing effect hinders the development of siRNA-based therapeutic and research applications. Existing solutions for finding possible locations of siRNA seats within a large database of genes are either too slow, miss a portion of the targets, or are simply not designed to handle a very large number of queries. We propose a new approach that reduces the computational time as compared to existing techniques.</p> <p>Findings</p> <p>The proposed method employs tree-based storage in a form of a modified truncated suffix tree to sort all possible short string substrings within given set of strings (i.e. transcriptome). Using the new algorithm, we pre-computed a list of the best siRNA locations within each human gene ("siRNA seats"). siRNAs designed to reside within siRNA seats are less likely to hybridize off-target. These siRNA seats could be used as an input for the traditional "set-of-rules" type of siRNA designing software. The list of siRNA seats is available through a publicly available database located at <url>http://web.cos.gmu.edu/~gmanyam/siRNA_db/search.php</url></p> <p>Conclusions</p> <p>In attempt to perform top-down prediction of the human siRNA with minimized off-target hybridization, we developed an efficient algorithm that employs suffix tree based storage of the substrings. Applications of this approach are not limited to optimal siRNA design, but can also be useful for other tasks involving selection of the characteristic strings specific to individual genes. These strings could then be used as siRNA seats, as specific probes for gene expression studies by oligonucleotide-based microarrays, for the design of molecular beacon probes for Real-Time PCR and, generally, any type of PCR primers.</p
- …