101 research outputs found

    Variations of polyphenols, sugars, carotenoids, and volatile constituents in pumpkin (Cucurbita moschata) during high pressure processing: A kinetic study

    Get PDF
    High pressure processing (HPP) is an attractive technology for the preservation of vegetables with health promoting properties such as pumpkins. In this study pumpkin cubes were treated at six different pressures (100 to 600 MPa) at 20 °C for 3 min. Polyphenols (extracted both with solvent and by squeezing the residual material), carotenoids, sugars, and volatiles were evaluated. HPP at medium pressures (200–400 MPa) resulted in higher number of extractable polyphenols. Total sugars in HPP-treated samples were overall declining with increasing pressure. The total amount of carotenoids was higher in samples treated at lower pressures (100–300 MPa) and in the one at 600 MPa compared to untreated ones. Regarding volatile compounds, significant changes were observed for some aldehydes that increase after HPP application. This study revealed that treatment with intermediate pressure could ensure a higher amount of “availability” of polyphenols, carotenoids, volatiles, and total sugars in pumpkin samples

    Comparison of physical, microstructural, antioxidant and enzymatic properties of pineapple cubes treated with conventional heating, ohmic heating and high-pressure processing

    Get PDF
    Pineapple cubes in sugar syrup were treated with high-pressure processing (HPP), conventional (DIM) heating and ohmic heating (OHM). Samples were compared in terms of microstructural, physical (total soluble solids, sieve analysis, texture and colour) and residual pectin methylesterase activity (PME) and total antioxidant capacity. OHM yielded relevant changes in cellular microstructure and electroporation of the cell wall. The HPP treatment favoured the presence of soluble solids in the syrup, and the samples were less damaged in terms of shape and microstructure. in the samples were harder following HPP than they were with OHM and DIM, while HPP showed the highest colorimetric (ΔE) differences compared with RAW samples. The PME residual activity was the lowest in pineapple treated by DIM, while the antioxidant capacity was comparable among treated samples

    High pressure and thermal processing on the quality of zucchini slices

    Get PDF
    In response to the market demand for low processed vegetables, high-pressure treatments (400,600 MPa; 1,5 min) were applied on zucchini slices and compared to a traditional blanching treatment. Histological observations, texture and color analysis, pectinmethylesterase (PME) and antioxidant (DPPH) activities were measured and compared to untreated samples. The histological observations revealed that the longer high-pressure treatments (5 min) led to more extended cell lysis and dehydration than the shorter ones (1 min) and blanching. High-pressure treatments resulted less effective than blanching on PME inactivation, with the best results obtained at 400 MPa for 1 min. Comparable texture parameters were observed for high-pressured and blanched samples. The negative correlation found between PME activity and the texture parameter ‘distance of the first peak force’ revealed an effect of PME on the texture recovery after treatments. High pressure led to a general browning of zucchini parenchyma and to DPPH drop. The correlations found between DPPH and color suggest the common nature of the phenomena. The influence of pressure and time on the studied parameters was revealed by two-way ANOVA. Principal component analysis clustered together the four high-pressure-treated samples, being clearly divided by blanched and untreated ones

    From byproduct to resource: Fermented apple pomace as beer flavoring

    Get PDF
    One of the main struggles of the large-scale apple processing industry is pomace disposal. One solution for this problem is to convert this waste into a resource. Apple pomace could be used as a substrate for lactic acid bacteria and could induce the formation of a more complex aroma profile, making this fermented product an innovative aromatizer for alcoholic beverages, such as beer. In this study, for the first time, the effect of lacto-fermented apple pomace addition in beer was evaluated. Three bacterial strains (Lactobacillus rhamnosus 1473 and 1019, and L. casei 2246) were tested for apple pomace fermentation, and L. rhamnosus 1473 was the strain that best modified the aromatic profile. The addition of fermented apple pomace to beer increased the complexity of the aroma profile, demonstrating the potential of this byproduct as an aromatizer in the alcoholic beverage industry

    In vitro cryopreservation of date palm caulogenic meristems

    Full text link
    Cryopreservation is the technology of choice not only for plant genetic resource preservation but also for virus eradication and for the efficient management of large-scale micropropagation. In this chapter, we describe three cryopreservation protocols (standard vitrification, droplet vitrification, and encapsulation vitrification) for date palm highly proliferating meristems that are initiated from vitro-cultures using plant growth regulator-free MS medium. The positive impact of sucrose preculture and cold hardening treatments on survival rates is significant. Regeneration rates obtained with standard vitrification, encapsulation-vitrification, and droplet-vitrification protocols can reach 30, 40, and 70%, respectively. All regenerated plants from non-cryopreserved or cryopreserved explants don't show morphological variation by maintaining genetic integrity without adverse effect of cryogenic treatment. Cryopreservation of date palm vitro-cultures enables commercial tissue culture laboratories to move to large-scale propagation from cryopreserved cell lines producing true-to-type plants after clonal field-testing trials. When comparing the cost of cryostorage and in-field conservation of date palm cultivars, tissue cryopreservation is the most cost-effective. Moreover, many of the risks linked to field conservation like erosion due to climatic, edaphic, and phytopathologic constraints are circumvented. (Résumé d'auteur

    Thermal fatigue as the origin of regolith on small asteroids

    Get PDF
    Space missions and thermal infrared observations3 have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders bymicrometeoroid impact. Laboratory experiments6 and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second,which corresponds to the gravitational escape velocity of kilometre-sized asteroids.Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids.We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originatingin thermal fatigue fragmentationmay be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids
    corecore