11,686 research outputs found
New classes of quasi-solvable potentials, their exactly-solvable limit and related orthogonal polynomials
We have generated, using an sl(2,R) formalism, several new classes of
quasi-solvable elliptic potentials, which in the appropriate limit go over to
the exactly solvable forms. We have obtained exact solutions of the
corresponding spectral problems for some real values of the potential
parameters. We have also given explicit expressions of the families of
associated orthogonal polynomials in the energy variable.Comment: 14 pages, 5 tables, LaTeX2
Soliton Lattice and Single Soliton Solutions of the Associated Lam\'e and Lam\'e Potentials
We obtain the exact nontopological soliton lattice solutions of the
Associated Lam\'e equation in different parameter regimes and compute the
corresponding energy for each of these solutions. We show that in specific
limits these solutions give rise to nontopological (pulse-like) single
solitons, as well as to different types of topological (kink-like) single
soliton solutions of the Associated Lam\'e equation. Following Manton, we also
compute, as an illustration, the asymptotic interaction energy between these
soliton solutions in one particular case. Finally, in specific limits, we
deduce the soliton lattices, as well as the topological single soliton
solutions of the Lam\'e equation, and also the sine-Gordon soliton solution.Comment: 23 pages, 5 figures. Submitted to J. Math. Phy
Electrically modulated photoluminescence in ferroelectric liquid crystal
Electrical modulation and switching of photoluminescence (PL) have been
demonstrated in pure deformed helix ferroelectric liquid crystal (DHFLC)
material. The PL intensity increases and peak position shifts towards lower
wavelength above a threshold voltage which continues up to a saturation
voltage. This is attributed to the helix unwinding phenomenon in the DHFLC on
the application of an electric field. Moreover, the PL intensity could be
switched between high intensity (field-on) and low intensity (field-off)
positions. These studies would add a new dimension to ferroelectric liquid
crystal's application in the area of optical devices.Comment: 4 figure
Emergence of a non-scaling degree distribution in bipartite networks: a numerical and analytical study
We study the growth of bipartite networks in which the number of nodes in one
of the partitions is kept fixed while the other partition is allowed to grow.
We study random and preferential attachment as well as combination of both. We
derive the exact analytical expression for the degree-distribution of all these
different types of attachments while assuming that edges are incorporated
sequentially, i.e., a single edge is added to the growing network in a time
step. We also provide an approximate expression for the case when more than one
edge are added in a time step. We show that depending on the relative weight
between random and preferential attachment, the degree-distribution of this
type of network falls into one of four possible regimes which range from a
binomial distribution for pure random attachment to an u-shaped distribution
for dominant preferential attachment
EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles.
Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM-1 s-1 and r2 relaxivity of 32.7 ± 4.7 mM-1 s-1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM-1 s-1 and r2 relaxivity of 1078.5 ± 1.9 mM-1 s-1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP's. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP's
Time lower bounds for nonadaptive turnstile streaming algorithms
We say a turnstile streaming algorithm is "non-adaptive" if, during updates,
the memory cells written and read depend only on the index being updated and
random coins tossed at the beginning of the stream (and not on the memory
contents of the algorithm). Memory cells read during queries may be decided
upon adaptively. All known turnstile streaming algorithms in the literature are
non-adaptive.
We prove the first non-trivial update time lower bounds for both randomized
and deterministic turnstile streaming algorithms, which hold when the
algorithms are non-adaptive. While there has been abundant success in proving
space lower bounds, there have been no non-trivial update time lower bounds in
the turnstile model. Our lower bounds hold against classically studied problems
such as heavy hitters, point query, entropy estimation, and moment estimation.
In some cases of deterministic algorithms, our lower bounds nearly match known
upper bounds
Surface Engineering for Phase Change Heat Transfer: A Review
Among numerous challenges to meet the rising global energy demand in a
sustainable manner, improving phase change heat transfer has been at the
forefront of engineering research for decades. The high heat transfer rates
associated with phase change heat transfer are essential to energy and industry
applications; but phase change is also inherently associated with poor
thermodynamic efficiencies at low heat flux, and violent instabilities at high
heat flux. Engineers have tried since the 1930's to fabricate solid surfaces
that improve phase change heat transfer. The development of micro and
nanotechnologies has made feasible the high-resolution control of surface
texture and chemistry over length scales ranging from molecular levels to
centimeters. This paper reviews the fabrication techniques available for
metallic and silicon-based surfaces, considering sintered and polymeric
coatings. The influence of such surfaces in multiphase processes of high
practical interest, e.g., boiling, condensation, freezing, and the associated
physical phenomena are reviewed. The case is made that while engineers are in
principle able to manufacture surfaces with optimum nucleation or thermofluid
transport characteristics, more theoretical and experimental efforts are needed
to guide the design and cost-effective fabrication of surfaces that not only
satisfy the existing technological needs, but also catalyze new discoveries
- …
