43 research outputs found

    A new low intensity beam profiler for SPIRAL2

    Get PDF
    WEPF14International audienceIn the framework of SPIRAL 2 ion beams, several beam profile monitors are presently being developed at GANIL. One of them is a low-intensity beam-profile monitor that works as a secondary electron detector. This Emission-Foil Monitor (EFM) will be used in the radioactive beam lines of SPIRAL2 and in the experimental rooms of this new facility. The ions produce secondary electrons when they are stopped in an aluminium emissive foil. The electrons are then accelerated using an electric field and guided using a magnetic field to a double-stage microchannel plate (MCP). A 2D pixellated pad plane placed below the MCP is used to collect the signals. The magnetic field created by permanent magnets in a closed magnetic circuit configuration permits the beam-profile reconstruction to be achieved with a good resolution. The EFM can visualize beam-profile intensities between only a few pps to as much as 109 pps and with energies as low as several keV. This profiler has been under development since 2009 and is currently manufactured. Recent results of this monitor are presented in this article

    Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei

    Full text link
    We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei 19^{19}B, 22^{22}C and 29^{29}F as well as that of 34^{34}Na. In addition, the most precise determinations to date for 23^{23}N and 31^{31}Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in 22^{22}C, with a dominant ν2s1/22\nu2s_{1/2}^2 configuration, and a single-neutron halo in 31^{31}Ne with the valence neutron occupying predominantly the 2p3/2p_{3/2} orbital. Despite a very low two-neutron separation energy the development of a halo in 19^{19}B is hindered by the 1d5/22d_{5/2}^2 character of the valence neutrons.Comment: 5 page

    Focal Plane Detector System of SHARAQ Spectrometer

    Get PDF
    International audienceThis report describes the basic performance of the detector system installed in the final momentum-dispersive focal plane of the SHARAQ spectrometer

    Performance of the improved larger acceptance spectrometer: VAMOS++

    Get PDF
    International audienceMeasurements and ion optic calculations showed that the large momentum acceptance of the VAMOS spectrometer at GANIL could be further increased from \sim 11% to \sim 30% by suitably enlarging the dimensions of the detectors used at the focal plane. Such a new detection system built for the focal plane of VAMOS is described. It consists of larger area detectors (1000 mm × 150 mm) namely, a Multi-Wire Parallel Plate Avalanche Counter (MWPPAC), two drift chambers, a segmented ionization chamber and an array of Si detectors. Compared to the earlier existing system (VAMOS), we show that the new system (VAMOS++) has a dispersion-independent momentum acceptance . Additionally a start detector (MWPPAC) has been introduced near the target to further improve the mass resolution to \sim 1/220. The performance of the VAMOS++ spectrometer is demonstrated using measurements of residues formed in the collisions of 129Xe at 967 MeV on 197Au

    MAYA: An active-target detector for binary reactions with exotic beams

    Get PDF
    International audienceWith recent improvements in the production of radioactive beams in facilities such as SPIRAL at GANIL, a larger area of the nuclear chart is now accessible for experimentation. For these usually low-intensity and low-energy secondary beams, we have developed the new MAYA detector based on the active-target concept. This device allows to use a relatively thick target without loss of resolution by using the detection gas as target material. Dedicated 3D tracking, particle identification, energy loss and range measurements allow complete kinematic reconstruction of reactions taking place inside MAYA

    High-resolution laser system for the S3-Low Energy Branch

    Full text link
    In this paper we present the first high-resolution laser spectroscopy results obtained at the GISELE laser laboratory of the GANIL-SPIRAL2 facility, in preparation for the first experiments with the S3^3-Low Energy Branch. Studies of neutron-deficient radioactive isotopes of erbium and tin represent the first physics cases to be studied at S3^3. The measured isotope-shift and hyperfine structure data are presented for stable isotopes of these elements. The erbium isotopes were studied using the 4f126s24f^{12}6s^2 3H64f12(3H)6s6p^3H_6 \rightarrow 4f^{12}(^3 H)6s6p J=5J = 5 atomic transition (415 nm) and the tin isotopes were studied by the 5s25p2(3P0)5s25p6s(3P1)5s^25p^2 (^3P_0) \rightarrow 5s^25p6s (^3P_1) atomic transition (286.4 nm), and are used as a benchmark of the laser setup. Additionally, the tin isotopes were studied by the 5s25p6s(3P1)5s25p6p(3P2)5s^25p6s (^3P_1) \rightarrow 5s^25p6p (^3P_2) atomic transition (811.6 nm), for which new isotope-shift data was obtained and the corresponding field-shift F812F_{812} and mass-shift M812M_{812} factors are presented

    New approach to the nuclear in beam γ\gamma spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    Get PDF
    In the european political field, the challenge consists in organizing a political debate on the scale of the Union whereas the citizens of this one do not speak the same language, ignore the Community institutions, live in different institutional systems and, during nearly 50 years, lived Wall on both sides, in opposite ideological universes. Television can help to take up this challenge in condition of being put in perspective in its right place: neither obsolete and diabolic object manipulating the masses, nor democratic fairy bringing the rational light to the individual

    ACTAR TPC Reaction Chamber

    No full text
    International audienc

    ZAP/AsAd cooling and shielding

    No full text
    International audienc

    A New Low Intensity Beam Profile Monitor for SPIRAL2

    No full text
    In order to obtain profiles of SPIRAL 2 ion beams, several beam profile monitors are presently being developed at GANIL. One of them is a lowintensity beam-profile monitor (EFM). This Emission-FoilMonitor (EFM) will be used in the radioactive beam lines of SPIRAL2 and in the experimental rooms of this new facility. The ions produce secondary electrons when they are stopped in an aluminium emissive foil. The electrons are then guided in an electric field placed parallel to a magnetic field in a doublestage microchannel plate (MCP). A 2D pixelated pad plane placed below theMCP is then used to collect the signal. The magnetic field created by permanent magnets in a closed magnetic circuit configuration permits the beam-profile reconstruction to be achieved with good resolution. The EFM can visualize beam-profile intensities between only a few pps to as much as 109 pps and with energies as low as several keV. This profiler has been under development since 2011 and is actually manufactured. For the signal acquisition, a new dedicated electronics system will be employed. Recent results of this monitor and its associated electronics will be presented here
    corecore