552 research outputs found

    Comparison and Regulation of Neuronal Synchronization for Various STDP Rules

    Get PDF
    We discuss effects of various experimentally supported STDP learning rules on frequency synchronization of two unidirectional coupled neurons systematically. First, we show that synchronization windows for all STDP rules cannot be enhanced compared to constant connection under the same model. Then, we explore the influence of learning parameters on synchronization window and find optimal parameters that lead to the widest window. Our findings indicate that synchronization strongly depends on the specific shape and the parameters of the STDP update rules. Thus, we give some explanations by analyzing the synchronization mechanisms for various STDP rules finally

    A Sarcoplasmic Reticulum Localized Protein Phosphatase Regulates Phospholamban Phosphorylation and Promotes Ischemia Reperfusion Injury in the Heart.

    Get PDF
    Phospholamban (PLN) is a key regulator of sarcolemma calcium uptake in cardiomyocyte, its inhibitory activity to SERCA is regulated by phosphorylation. PLN hypophosphorylation is a common molecular feature in failing heart. The current study provided evidence at molecular, cellular and whole heart levels to implicate a sarcolemma membrane targeted protein phosphatase, PP2Ce, as a specific and potent PLN phosphatase. PP2Ce expression was elevated in failing human heart and induced acutely at protein level by β -adrenergic stimulation or oxidative stress in cardiomyocytes. PP2Ce expression in mouse heart blunted β-adrenergic response and exacerbated ischemia/reperfusion injury. Therefore, PP2Ce is a new regulator for cardiac function and pathogenesis

    Controlled release of anticancer drugs, proteins and liposomes by polymeric microspheres

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fast simulation of the CEPC detector with Delphes

    Full text link
    Fast simulation tools are highly appreciated in particle physics phenomenology studies, especially in the exploration of the physics potential of future experimental facilities. The Circular Electron Positron Collider is a proposed Higgs and Z factory that can precisely measure the Higgs boson properties and the electroweak precision observables. A fast-simulation toolkit dedicated to the CEPC detector has been developed using Delphes. The comparison shows that this fast simulation tool is highly consistent with the full simulation, on a set of benchmark distributions. Therefore, we recommend this fast simulation toolkit for CEPC phenomenological investigations

    He+eH \rightarrow e^+ e^- at CEPC: ISR effect with MadGraph

    Full text link
    The Circular Electron Positron Collider (CEPC) is a future Higgs factory proposed by the Chinese high energy physics community. It will operate at a center-of-mass energy of 240-250 GeV. The CEPC will accumulate an integrated luminosity of 5 ab1^{\rm{-1}} in ten years' operation. With GEANT4-based full simulation samples for CEPC, Higgs boson decaying into electron pair is studied at the CEPC. The upper limit of B(He+e){\cal B}(H \rightarrow e^+ e^-) could reach 0.024\% at 95\% confidence level. The signal process is generated by MadGraph, with Initial State Radiation (ISR) implemented, as a first step to adjust MadGraph for a electron positron Collider.Comment: Accepted version by J.P.

    Nonlinear Rheological Behaviors in Polymer Melts after Step Shear

    Get PDF
    Using molecular dynamics simulation, we investigate the evolution of chain conformation, stress relaxation, and fracture for a polymer melt between two walls after step shear. We find that the characteristic overlap time for the reduced relaxation moduli and the time that the stretched primitive chain retracts to its equilibrium length are both much longer than the Rouse time. Importantly, we observe significant fracture-like flow after shear cessation. While there is considerable randomness in the location of the fracture plane and the magnitude of displacement from sample to sample, our analysis suggests that the randomness is not due to thermal noise, but may reflect inherent structural and dynamic heterogeneity in the entangled polymer network
    corecore