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SUMMARY 

 

A simple but great idea in rational drug design is that loading drugs to a vehicle made of 

biocompatible materials may provide better therapeutic effects of the drugs, because the 

vehicle, very much like that for macroscopic cargo, is potentially able to protect the drug, 

control the drug release rate, and target the drug to desired sites. This idea has led to the 

area of controlled drug delivery, which has achieved remarkable success in both laboratory 

research and clinical applications in the last decades, and is now drawing more and more 

attention of the pharmaceutical industry. 

 

Polymeric microspheres are such a vehicle for controlled drug delivery. The materials 

used in their preparation play critical roles for their applications. In the present thesis, 

novel polymers such as poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-

PEG-PLA), organic solvents such as ethyl acetate and acetone, and additives such as d-

alpha tocopheryl polyethylene glycol 1000 succinate (Vitamin E TPGS), which have 

different hydrophobicity from their conventional counterparts, were applied in the 

fabrication of microspheres encapsulating either water insoluble agents, with an anticancer 

drug paclitaxel as the prototype, or water soluble agents, with a protein human serum 

albumin (HSA) as the prototype. Their effects on the properties of the resulted products 

were investigated. It has been found that these materials could be useful for controlling or 

improving the properties of the polymeric microspheres. For instance, PLA-PEG-PLA 

facilitated the release rate of paclitaxel to meet the requirement of cancer chemotherapy. It 

could also increase the encapsulation efficiency of proteins. Ethyl acetate and acetone are 
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less toxic than the conventional solvent dichloride methane (DCM), and they showed good 

effect on adjusting the particle size of HSA-loaded microspheres. In addition, Vitamin E 

TPGS might improve the quality of the microspheres, and could be useful in controlling 

protein release. 

 

Based on the understanding obtained in the study of polymeric microspheres encapsulating 

paclitaxel and HSA, a novel controlled drug delivery system liposomes-in-microsphere 

(LIM), in which drug-loaded lipid vesicles (liposomes) are encapsulated into polymeric 

microspheres, was created and its potential applications were probed. The 

microencapsulation process and the liposome structure were modified to maintain the 

integrity of the liposomes. The release of liposomes from the polymer matrix could be 

controlled by the properties of the liposomes and the microspheres. The LIM system could 

combine the advantages and avoid the disadvantages of the polymer-based and lipid-based 

systems, and open a room for new applications. 
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CHAPTER 1 LITERATURE REVIEW 

 

1.1 Controlled drug delivery 

 

Introduction of high-throughput screening, combinational libraries and automated 

synthesis methods has immensely expanded the capacity of developing new drug 

compounds [Guarino, 2000]. However, it has been widely recognized that a large portion 

of the potential value of drugs has been lost due to inadequate delivery strategies 

[Saltzman, 2001]. Drug release from conventional drug delivery systems is largely 

dependent upon the biological environment, thereby making the release behavior difficult 

to be predicted and controlled. A drug concentration lower than the minimum level of the 

desired concentration range is not able to achieve sufficient drug efficacy, and a too high 

drug concentration may lead to serious side effects. In recent years, many controlled drug 

delivery systems have been developed. By encapsulating drugs in or attaching them to 

polymers or lipids, the drug release can be mostly controlled by the properties of the 

delivery systems. The advantages of controlled drug delivery systems can be summarized 

as below [Park, 1997]. 

(1) Continuous maintenance of drug levels in a therapeutically desirable range due to 

the sustained and controllable release manner. 

(2) Decreased side effects due to targeted drug release to a particular cell 

type/tissue/organ. 

(3) Protection of activity of drugs, especially proteins and genes which have delicate 

and function-related molecular structure. 
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(4) Enhanced bio-absorption of drugs, especially proteins/peptides, which are large 

hydrophilic molecules and can hardly penetrate the biological barriers formed by 

hydrophobic cell membranes. 

(5) Improved patient compliance, thanks to decreased number of drug dosages and 

possibly less invasive dosing. 

(6) Reduced drug amount required. 

(7) Multiple drugs may be delivered simultaneously. This is advantageous not only for 

patient compliance, but for synergetic effect of some drugs. 

 

Presently, annual sales of the controlled drug delivery systems in the United States are 

approaching $20 billion and are rising rapidly [Langer, 2001]. In comparison to the 

average 250-300 million dollars and 12-15 years needed for the development of a new 

drug, a drug can get a new life by developing a controlled delivery system with much less 

money and time consumed (20% of money and half of time) [Panchagnula, 1998]. 

 

1.2 Polymeric microspheres 

 

Since 1971, when Boswell filed a patent on the use of poly(lactic acid) in drug delivery 

systems [Boswell, 1971], numerous polymers have been synthesized and a number of 

polymer-based systems, such as polymer particles [Pekarek et al., 1994], films [Klausner 

et al., 2002], pellets [Becker et al., 1990], etc., have been developed for controlled drug 

delivery. Among them, a most frequently used system is polymeric microspheres, referred 

in the present thesis as spherical particles that are made of polymers, have micron size, can 

encapsulate bioactive agents and release them in a controlled manner. The controlled 
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release behavior of polymeric microspheres is dependent upon both the properties of the 

polymers and the microencapsulation process. 

 

1.2.1 Polymers 

 

Polymers are large molecules formed by the union of many identical units (monomers). In 

the first half of the last century, research of materials synthesized from α-hydroxy acids 

was abandoned because the resulting polymers were too unstable for long-term industrial 

uses. However, this very instability, leading to biodegradation, has proven to be 

immensely useful for medical applications due to the elimination of the need to surgically 

remove the medical devices made of these materials. In particular, for the application of 

drug delivery, biodegradation of polymer matrix also offers a drug release mechanism, 

which is especially important for drugs of low diffusivity. 

 

In addition to biodegradability, as the material for a drug delivery device, a polymer 

should meet the following requirements [Dumitriu, 2002]: 

(1) Satisfactory biocompatibility and bioabsorption 

(2) Easy to control drug release 

(3) Satisfactory mechanical properties 

(4) Easy for processing 

(5) Acceptable shelf life 

(6) Easy to be sterilized 
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1.2.1.1 PGA, PLA and PLGA 

 

Currently most commonly used biodegradable polymers for drug delivery are 

poly(glycolic acid) (PGA), poly(lactic acid) (PLA) and poly(lactide-co-glycolide) (PLGA), 

mostly due to the long history of their use as medical sutures. 

 

PGA is the simplest linear aliphatic polyester. It is normally synthesized from glycolide, 

the dimer of glycolic acid. PGA was used to develop the first totally synthetic absorbable 

suture. It is highly crystalline (45-55%) with a high melting point (220-225ºC) and a glass 

transition temperature of 35-40ºC. Because of its high degree of crystallization, it is not 

soluble in most organic solvents. Fibers from PGA exhibit high strength and modulus and 

are actually too stiff to be used as sutures except in the form of braided material. Glycolide 

has been copolymerized with lactide, the dimmer of lactic acid, to reduce the stiffness of 

the resulting fibers. 

 

PLA is normally synthesized from lactide. Lactide exists as two optical isomers, d and l. 

L-lactide is the naturally occurring isomer, and dl-lactide is the synthetic blend of d-lactide 

and l-lactide. Poly(l-lactide) is about 37% crystalline with a melting point of 175-178ºC 

and a glass transition temperature of 60-65ºC. The degradation of poly(l-lactide) is very 

slow, requiring more than 2 years to be completely absorbed. It exhibits high tensile 

strength and low elongation and consequently has a high modulus that makes it more 

suitable for load-bearing applications such as sutures. Poly(dl-lactide) is an amorphous 

polymer exhibiting a random distribution of both isomeric forms of lactic acid, and 

accordingly is unable to arrange into an organized crystalline structure. This material has 
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lower tensile strength, higher elongation, and a much more rapid degradation time, making 

it more attractive as a drug delivery system.  

 

Using the properties of PGA and PLA as a starting point, it is possible to copolymerize the 

two monomers to extend the range of the homopolymer properties. Fig. 1.1 shows the 

synthesis of PLGA. PLGA has been developed for both sutures and drug delivery 

applications. It is important to note that there is not a linear relationship between the 

copolymer composition and the mechanical and degradation properties of the materials. 

For example, a copolymer of 50% glycolide and 50% dl-lactide degrades faster than either 

homopolymer [Stallforthe and Revell, 2000].  

 

 

Figure 1.1 Synthesis of PLGA 
 

1.2.1.2 PLA and PEG copolymers 

 

Although the PLA and PLGA are now commonly used, they are far from perfect. A hot 

research topic has been to designing and synthesizing new polymers for the application of 

drug delivery. One very promising strategy is to copolymerize PLA and poly(ethylene 

glycol) (PEG). PEG has been known as an excellent biomaterial due to its 

biocompatibility, hydrophilicity and flexibility. It is also referred to as poly(ethylene oxide) 

(PEO) at high molecular weight. Copolymerization of hydrophobic PLA and hydrophilic 
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PEG can provide a balance between the two opposite parts. Furthermore, different 

supramolecular structures can be achieved by different monomer combinations and 

preparation processes to meet various medical requirements. 

 

Surface modification of polymeric nanoparticles has been achieved with PLA-PEG 

copolymers [Feast et al., 1993]. The PEG chains minimize non-specific fouling of the 

device surface with bio-components such as proteins. The uptake of nanoparticles by the 

reticuloendothelial system (RES) can be reduced. Diblock PLA-PEG copolymer can also 

form micelles in aqueous environment with PEG on the surface. Compared to surfactant 

micelles, these polymeric micelles are more stable, have a lowered critical micellar 

concentration, and have a slower rate of dissociation, allowing retention of loaded drugs 

for a longer period of time and, eventually, achieving higher accumulation of a drug at the 

target site. Furthermore, they have a size range of several tens of nanometers with a 

considerably narrow distribution, which is crucial in determining their body disposition 

[Katooka et al., 2001]. 

 

A family of star-block copolymers from multi-arm PEO and l-lactide or l-lactide/glycolide 

has been reported. In vitro degradation test results on these polymers show that the 

biodegradation consists of an initial slow-rate period in the first 2-3 weeks, which makes 

them an excellent drug carrier, and an exhaustive degradation period, which provides the 

way for renal excretion. The star shape of the polymers also leads to small hydrodynamic 

radius and low solution viscosity, which make them excellent for complete excretion 

[Choi et al., 1998, Li and Kissel, 1998]. 
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Thermosensitive hydrogels have been prepared from either PLA-PEO diblock or PEO-

PLA-PEO triblock polymers. The hydrogel can be loaded with bioactive molecules in an 

aqueous phase at an elevated temperature (around 45ºC), where a sol is formed. The 

polymer is injectable in this form. On subcutaneous injection and subsequent rapid cooling 

to body temperature at 37ºC, the polymer forms a gel that can act as a sustained-release 

matrix for drugs. The gel-sol transition temperature can be well controlled by the 

molecular weight of PLA segment. Both high molecular weight proteins and low 

molecular weight hydrophobic drugs can be loaded and released. The release rate is 

controllable by the initial drug loading and the polymer concentration [Jeong et al., 1997]. 

 

Biotin has been conjugated to the PLA-PEG copolymer to form a new polymer PLA-PEG-

biotin. In this new polymer, the PLA component provides structural integrity to the 

fabricated devices. The PEG block acts as a hydrophilic coating to avoid the uptake of 

RES. The third part of the polymer, i.e. biotin moiety, allows facile surface engineering 

using aqueous solution of avidin. Avidin posses a tetrameric structure with four binding 

sites for biotin. It binds to the biotin using one of these sites, and the other free binding 

sites are available for the attachment of biotinylated ligand motifs, which can then be used 

for targeting to tumor cells [Black et al., 1999, Cannizzaro et al., 1998]. 

 

1.2.2 Microencapsulation by polymeric microspheres  

 

A number of techniques have been developed to prepare polymeric microspheres to 

encapsulate bioactive agents. Following is a summary of these methods [O’Donnell and 

McGinity, 1997, Rajeev, 2000, Wise, 1995]. 
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1.2.2.1 Solvent extraction/evaporation method 

 

Solvent extraction/evaporation is the most popularly used method to prepare polymeric 

microspheres. It involves forming an emulsion, in which an organic solvent dissolving a 

polymer and containing a bioactive agent is the inner phase while water is the outer phase, 

followed by removal of the organic solvent by either extraction to the outer water phase or 

evaporation to the air, leaving behind solid tiny polymer particles with the bioactive agent 

encapsulated. Initially it was applied mainly for microencapsulation of water-insoluble 

drugs. In this case, the emulsion formed is an oil-in-water (o/w) emulsion, in which the 

drug, polymer and organic solvent form the oil phase. Later, this method was successfully 

adapted by Vrancken & Clays and Dejaeger & Tavernier to microencapsulate water-

soluble drugs, by forming a water-in-oil-in-water (w/o/w) emulsion, in which the drug is 

dissolved in the inner water phase and the polymer is dissolved in the oil phase [Dejaeger 

and Tavernier, 1971, Vrancken and Clays, 1970]. The method for encapsulation of water-

insoluble drugs is often termed as the oil-in-water single emulsion solvent 

extraction/evaporation method, or simply single emulsion method, while the method for 

water-soluble drugs as the w/o/w double emulsion solvent extraction/evaporation method, 

or simply double emulsion method.  

 

1.2.2.2 Other methods 

 

In phase separation method (coacervation method), the drug is either dissolved (for water-

insoluble drug) or dispersed (for water-soluble drug) in an organic solvent (solvent I) in 
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which the polymer has been dissolved. Another organic solvent (solvent II), which is 

miscible with the solvent I but doesn’t dissolve the polymer or the drug, is then added 

under stirring to gradually extract the solvent I, leaving behind soft polymer droplets. 

Afterwards a large quantity of the solvent III, which is relatively volatile, is added to 

remove the solvent II and harden the droplets, which become microspheres eventually. 

Compared with solvent extraction/evaporation method, phase separation has the advantage 

of high encapsulation efficiency of water-soluble drugs because no aqueous phase is 

involved to cause drug loss. On the other hand, this method suffers from the disadvantages 

of difficulty in the control of the process and large amount of organic solvents used, which 

is harmful to the environment. 

 

Spray drying method is rapid, convenient and easy to scale-up. A mixture of the drug, 

polymer and solvent is fed by a pump into a spray dryer, in which the mixture is atomized 

by compressed air and goes through a nozzle. Instantly the solvent is evaporated and the 

microsphere product can then be obtained from a collector located at the outlet of the 

equipment. However, a major drawback of this method is the adhesion of the microspheres, 

which are not hardened sufficiently yet, to the inner wall of the apparatus and with each 

other. 

 

The particle size of microspheres formed by all the above processes is mostly controlled 

by the mechanical forces used. Therefore, ideally one can obtain nano-size particles, or 

nanospheres, by simply increasing the mechanical strength. However, there are often 

lower limits to the sizes obtainable by these methods. Some methods are available 

especially for producing nanospheres. Frequently used are (1) the emulsion polymerization 
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technique, in which the monomer is polymerized in an emulsion, (2) the nanoprecipitation 

technique, in which the solvent of a low viscosity polymer solution rapidly diffuses to a 

miscible solvent, and (3) dialysis technique, in which polymer solution is dialyzed against 

water [Courvreur, 1979, Fonseca et al., 2002, Mathiowitz et al., 1997, La et al., 1996]. 

 

1.2.3 Controlled release by polymeric microspheres 

 

The mechanisms to control the release rate by a controlled delivery vehicle include 

dissolution, diffusion, erosion or chemical reactions, swelling, osmosis and external forces 

such as ultrasound and magnetic force [Langer, 1980, Van Brunt, 1986]. In polymeric 

microspheres, major mechanisms normally include polymer degradation and drug 

diffusion. In addition to controlling the drug release rate, releasing the drug at a desired 

site, or drug targeting, can also be very important, particularly for cancer chemotherapy. 

 

1.2.3.1 Control of release rate 

 

Almost all commercial biodegradable polymers for drug delivery have hydrolysable 

backbones and mainly undergo hydrolytic degradation. The possibility of enzyme 

degradation has also been considered [Schakenraad, 1990]. Two types of degradation are 

possible, namely bulk degradation and surface erosion. In bulk degradation, the rate of 

water penetration into the polymer matrix is faster than that of polymer degradation, so 

that degradation takes place throughout the whole matrix. In contrast, in surface erosion, 

water cannot enter the polymer matrix readily and the matrix has to erode gradually from 

the surface to the core. Surface erosion is normally desirable for drug release because of 
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its ability to offer zero-ordered release kinetics, i.e. constant drug release. However, up to 

now all the USA Food and Drug Administration (FDA) approved biodegradable polymers 

undergo the bulk degradation mechanism. 

 

Bulk degradation normally experiences three stages. In the beginning, the backbone of the 

polymer is hydrolyzed and its molecular weight decreases gradually. At this stage (stage I) 

the strength and integrity of the delivery device is intact. After some time, the device is 

hydrolyzed so greatly that the strength is lost (stage II) and the mass is subsequently 

dissolved (stage III). The dissolved mass can be further metabolized and eliminated from 

the human body eventually. 

 

The degradation rate of polymeric microspheres is dictated by their hydrophilicity since 

the degradation mechanism is mostly hydrolysis. Therefore, faster degradation can be 

caused by more hydrophilic molecular structure and more amorphous state of the polymer, 

and smaller particle size and higher porosity of the polymeric microspheres [Edlund and 

Albertsson, 2002]. 

 

By assuming that the driving force of diffusion is the concentration gradient, one may 

describe the drug diffusion in polymer matrix by Fick’s first law in which the diffusive 

flux is proportional to the drug concentration gradient. The coefficient is termed as the 

intrinsic diffusivity of the drug in the polymer matrix. It is a constant of proportionality or 

may be a function of concentration. Considerations based on the thermodynamics of 

irreversible processes indicate that a more fundamental driving force is the gradient of 

chemical potential of the drug. The resulted Fick’s first law has the similar form as the 
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concentration based one: the drug diffusive flux is proportional to the chemical potential 

gradient. The coefficient, i.e. the chemical potential based diffusivity, is less dependent on 

the concentration of the drug [Bird et al., 1960]. 

 

A distinction between two types of situations has been made with respect to drug diffusion 

in polymeric matrix. In one type, the pores in the polymer matrix are smaller than or of the 

same order magnitude as the mean free path (or average jump distance) of the drug 

molecules. The molecular network constituting the polymer matrix takes part at the 

molecular level in frictional interactions with the drug molecules. In the other type, the 

pores in the polymer matrix are much larger than the mean free path of the drug molecules. 

The system containing these pores may be regarded as comprising two phases: the 

polymer phase represents little more than a solid container for the diffusing fluid phase 

within which the transport process occurs. The polymer phase only serves to define the 

geometry of the diffusing channels [Mikulecky and Caplan, 1966]. 

 

The drug diffusion rate in the polymer matrix depends on the temperature, the molecular 

structure of the drug and the polymer, the presence of other components and so on. For 

example, an elevated temperature increases the mobility of the polymer chain and the free 

volume in the polymer matrix, thereby leading to higher drug diffusivity. Drug molecules 

of low molecular weight readily pass through polymer molecules of high molecular weight, 

giving large drug diffusivity. In addition, the presence of a plasticizer increases the drug 

diffusivity, because it reduces the polymer interchain interactions and can serve as a 

diluent.  
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A generic kinetics of drug release from polymeric microspheres has three stages. In the 1st 

stage, the drug attached to, or loosely entrapped near, the microsphere surface is desorpted 

and gives rise to a fast release, which is known as initial burst. This is followed by the 2nd 

stage in which drug mainly diffuses out through the free volume in the polymer matrix. In 

the subsequent 3rd stage, the polymer degradation mechanism becomes predominant, 

implying that the drug most likely escapes from the polymer matrix together with the 

degraded polymer. These three phases are sometimes not so distinctly divided. For 

instance, certain parameters may be adjusted to make the diffusion faster and desorption 

slower, thereby leading to more sustained release, which is desirable in most clinical cases 

[Huang and Braxel, 2001]. 

 

1.2.3.2 Control of release site 

 

It is estimated that only less than 1% of the intravenously administered dose of a free drug 

reaches the desired site, while the remaining majority causes toxicity in various organs 

[Ceh, 1997]. This fact indicates a large room for research on targeted drug delivery 

devices which are able to release the drug at selected organs, tissues, cells or even 

intracellular compartments. Polymeric microspheres can be used as a targeted device. 

 

The particle size of polymeric microspheres is critical to dictate their delivery route and 

biological fate. Microspheres of particle size less than 10 µm are desirable for intravenous 

injection. Smaller particle size is required for oral, transdermal, ocular and nasal delivery. 

Microspheres in size range of 10-100 µm can be used for subcutaneous or intramuscular 

administration while particle size over 100 µm have been employed for implantation 
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[Magda et al., 1993]. Once entering systemic circulation, a large portion of the polymeric 

microspheres is taken by RES. In general, smaller particle size helps to reduce the RES 

uptake [Willmott and Daly, 1994]. RES targeting is desirable in some cases, however, 

such as RES diseases and drug delivery avoiding important sites (e.g. heart) to reduce 

systemic side effects. Besides, microspheres with size range of 20-50 µm are able to 

provide targeting to tumor via the so-called chemoembolization process. For instance, to 

treat liver cancer, polymeric microspheres are injected to the liver artery, and are trapped 

in the microvasculature of the liver. In comparison with the microvasculature of normal 

tissue, that of tumor is much leakier and will thus trap most of the microspheres [Dass and 

Burton, 1999]. 

 

Surface modification is another means to control the biological fate of the polymeric 

microspheres. Bioadhesive polymers such as polyanhydride copolymers of fumaric and 

sebacid acid can increase the absorption of the polymeric microspheres at certain sites 

[Mathiowitz et al., 1997]. On the other hand, coating the polymeric microspheres with 

some hydrophilic polymers may avoid the uptake by RES [Stolnik et al., 1995]. 

Theoretically, a number of ligands can be coupled onto the surface of the microspheres to 

allow targeting to tumor cells through recognition of proteins involved in receptor-

mediated cell entry. 

 

Attempts have also been made to achieve targeting by external forces. For instance, ultra-

fine particles of magnetite (Fe3O4) have been incorporated into albumin microspheres 

containing an anticancer drug doxorubicin. The movement of the particles after intra-
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arterial administration can be controlled by an externally applied magnetic field [Gupta 

and Hung, 1989]. 

 

1.3 Characterization techniques 

 

Various characterization techniques have been used to obtain a thorough picture of a 

controlled drug delivery system. This Section summarizes those involved in the present 

thesis. 

 

1.3.1 Microscopy 

 

Objects of interests to us exist in a very wide range of sizes but the unaided human eyes 

are unable to see the small ones, including most of controlled drug delivery devices. For 

two points in an image to be seen as separate, the viewing angle must be big enough so 

that their images can fall on at least two cells of the retina. Moving an object closer to the 

eye has the effect of increasing the size of the image on the retina, making the object 

‘look’ bigger. However, because the unaided human eye cannot focus on objects closer 

than about 250 mm, there is a limit to the extent to which detail perception can be 

increased by this means. To see more details, the object must be in effect brought ‘closer’ 

to the eye than allowed by the nearest distance of distinct vision. The instrument used to 

achieve this is the microscope [Gage, 1947]. 

 

The light microscope is the oldest form of microscopes but still commonly used nowadays 

due to the ease of use and sample preparations. To obtain a nice contrast in the image of an 
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object, either transmitted or reflected light, either normal or polarized light, either bright or 

dark field, either intensity or phase contrast, can be used, making light microscopes a very 

flexible technique [Amelinckx et al., 1997]. The resolution of a light microscope is 

governed by its numerical aperture (NA) and the wavelength of the light used. In practice, 

for an oil-immersion objective of NA 1.4 used with green light, which has a wavelength of 

550 nm, the resolution is about 0.25 µm [Bradbury and Bracegirdle, 1997]. Since the 

practical upper limit of the NA of an objective is about 1.4, further increase in resolution is 

possible only by the use of shorter wavelengths. Ultraviolet light with its shorter 

wavelength may be used but the value is limited by the fact that the sensitivity of the eye 

falls off dramatically as the wavelength becomes shorter. Nowadays for resolution 

significantly better than 0.25 µm and hence the possibility of greatly increased 

magnifications, it is common to use radiation of much shorter wavelength, commonly a 

beam of electrons, in the electron microscope. 

 

The transmission electron microscope (TEM) is arranged much like an ordinary light 

microscope designed for examining translucent specimens by the transmission of visible 

light except that magnets are used instead of light-bending lenses to deflect and focus the 

beam of electrons. The electrons originate in an electron gun that usually has a hot 

filament (sometimes a cold-cathode emitter) as the source and an arrangement for defining 

and accelerating a narrow beam of electrons. The accelerated beam is then focused on a 

tiny area of the specimen by a pair of concentric toroidal electromagnets that act as 

condensing coils. Since different parts of the specimen absorb electrons differentially, as 

the projected beam of electrons falls on a fluorescent screen, it shows bright areas where 

the sample has absorbed less and darker areas where the sample has absorbed more of the 
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electrons. In another type of electron microscope, scanning electron microscope (SEM), 

the signals scattered from the surface of the specimen including secondary electrons, 

backscattered electrons, characteristic X-rays, etc., are received by cathode ray tubes 

which are synchronized with the scanner probing the surface of the specimen. All electron 

microscopes require vacuum in the interior since electron beam would be scattered by 

collision with air molecules [Rochow and Tucker, 1994]. TEM and SEM have become 

indispensable means to observe drug delivery devices such as polymeric microspheres and 

liposomes [Honeywell-Nguye et al., 2002, Mandal et al., 2002]. 

 

Even better resolution has been achieved by scanning tunneling microscope (STM) and 

atomic force microscope (AFM), which are based on the finding that atomic-scale images 

can be obtained when a fine ‘tip’ is passed very close to a surface [Dvorak, 2003]. In STM, 

a fine tip is brought close (a few Å) to a sample surface, and the wave functions of the 

electrons of the tip and those of the surface overlap. By applying a voltage between the tip 

and the sample, a tunneling current is established through the vacuum barrier. The 

intensity of this current is a measure of the overlap between these two wave functions and 

depends very strongly on the tip-sample distance. During a scan of the sample surface, the 

tunneling current is recorded to produce the atomic-scale topographic map. AFM is similar 

to STM except that it measures the inter-atomic force between the tip and the sample 

surface instead of the tunneling current [Stefanis and Tomlinson, 2001]. AFM and STM 

have been recently applied for visualization of controlled drug delivery devices [Olbrich et 

al., 2001, Vermette et al., 2002]. 
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Besides increasing resolution, microscopy techniques have undergone great developments 

in other aspects such as 3-dimentional imaging and chemical analysis. In confocal laser 

scanning microscope (CLSM), two lenses are arranged to focus on the same point. 

Because of the pinholes, or apertures, on each side of the specimen, only a very small 

volume is focused at any time. Light from only the actual plane of focus enters the 

eyepiece, which eliminates practically all of glare and scattered light. 3-D imaging is 

possible by the above concept, along with the progress in laser illumination and 

computerized image analysis [Sheppard and Shotton, 1998]. CLSM technique has been 

applied to investigate the drug distribution in polymeric microspheres [Yang et al., 2001]. 

In addition, as mentioned earlier, many signals are generated in SEM when an electron 

beam is scanned on the specimen surface. Among them is characteristic spectrum of X-

rays. Because the intensity of the continuum is a function of atomic number, the chemical 

composition of the specimen surface can be analyzed by examining these signals. This is 

what a new microscopy technique, namely SEM-EDX (energy dispersive X-ray 

spectroscopy), does [Bubert and Jenett, 2002]. 

 

1.3.2 Spectroscopy 

 

Spectroscopy is concerned with the interaction of electromagnetic radiation with matter. 

The consequence of such interaction is that energy is absorbed or emitted by the atoms and 

molecules in discrete amounts or quanta according to quantum mechanics. A measurement 

of the radiation frequency gives a value for the change of energy involved, and from a 

complete investigation it is possible to infer the set of possible discrete energy levels of the 

matter being studied, which is unique for different matters [Whiffen, 1972]. 
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Experimental methods of spectroscopy began in the more accessible visible region of the 

electromagnetic spectrum where the eye could be used as the detector. At first, it was 

discovered that white light was dispersed into a range of colors by a triangular glass prism. 

The prism was later developed for use as an analytical instrument. Its early application 

was the observation of the emission spectra of various samples in a flame. Subsequently, 

the resulting series lines in visible spectrum of atomic hydrogen were fitted to a 

mathematical formula, beginning the close relationship between experiment and theory in 

spectroscopy. However theory ran increasingly into trouble so long as it was based on 

classical Newtonian mechanics until the development of quantum mechanics. The 

availability of large, fast computers resulted in fewer and fewer approximations required 

to be made in the theoretical calculations [Hollas, 1996]. 

 

Nowadays spectroscopy has become an essential approach to investigate the structure, 

state, and concentration of matters. Many spectroscopy techniques have been developed in 

the recent decades, because electromagnetic radiation covers a wide wavelength range 

from radio waves to γ-rays and the atoms or molecules may be in the gas, liquid, or solid 

phase or, of great importance in surface chemistry, adsorbed on a solid surface. Three 

typical spectroscopy techniques, namely, UV-Vis spectrophotometer, X-ray photoelectron 

spectroscopy (XPS), and fluorescence spectroscopy, are introduced below as examples. 

 

UV-Vis spectrophotometer utilizes the absorption of ultraviolet or visible lights by a 

sample to determine the sample concentration. Lambert-Beer’s Law states that the change 
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in intensity of light (dI) after passing through a sample is proportional to the path length 

(b), the sample concentration (c) and the intensity of the incident light (I). That is to say  

 

kbcI
dI −=          (Equation 1.1) 

 

where k is a proportionality constant. Thus, the concentration of a sample can be 

determined by measuring the change of light intensity due to absorption, with the path 

length kept constant. In the area of controlled release, this technique has been widely used 

to measure the amount of released agent from the delivery vehicles in the release medium 

[Meziani et al., 2002, Ruan et al., 2002]. 

 

The UV-Vis spectrophotometer often uses two light sources, a deuterium lamp for 

ultraviolet light and a tungsten lamp for visible light. A diffraction grating which can be 

rotated allows for a specific wavelength of the light to be selected. One light beam is 

allowed to pass through a reference cuvette, which contains the solvent only, while the 

other passes through the sample cuvette. The intensities of the two light beams are then 

measured and compared at the end [Gillespie, 1994]. 

 

XPS is a major tool for surface chemical analysis. XPS analysis involves irradiating a 

solid sample in vacuum with monoenergetic soft X-rays and analyzing the emitted 

electrons by energy. These photons have limited penetrating power in a solid on the order 

of 1-10 micrometers. They interact with atoms in the surface region, causing electrons to 



  Chapter 1 Literature Review 
──────────────────────────────────────────────── 

 
Ruan Gang: PhD thesis  21 

be emitted by the photoelectric effect. The emitted electrons have kinetic energies (KE) 

given by 

 

sBEhKE γν −−=         (Equation 1.2) 

 

where hν is the energy of the photon. BE is the binding energy of the atomic orbital from 

which the electron originates, and γs is the spectrometer work function. Because each 

element has a unique set of binding energies, XPS can be used to identify and determine 

the concentration of the elements in the surface. Variations in the elemental binding 

energies (the chemical shifts) arise from differences in the chemical potential and 

polarizability of compounds. These chemical shifts can be used to identify the chemical 

state of the materials being analyzed. Because the mean free path of electrons in solid is 

very small, the detected electrons originate from only the top few atomic layers, making 

XPS a unique surface-sensitive technique for chemical analysis. This technique has been 

applied to investigate the surface chemistry of drug delivery devices, which can be 

correlated with their interactions with biological environment [Evora et al., 1998, 

Shakesheff et al., 1997]. 

 

In an XPS experiment, the samples are often excited by unmonochromatized Kα lines from 

aluminum and magnesium sources. The emitted electrons are collected, retarded and 

analyzed as a function of their KE values. The concentric hemispherical analyzer, which is 

made of two concentric hemispheres, is the most widely used analyzer in XPS. The 
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spectrum is obtained as a plot of the number of detected electrons per energy interval 

versus their binding energy [Chastain, 1992]. 

 

The phenomenon of fluorescence has been applied for many analytical instruments, 

including fluorescence spectroscopy. The mechanism of fluorescence can be described as 

the following: when a substance absorbs light, its molecules are excited from a ground 

state to a higher energy level. The molecules can then return to their ground state by losing 

energy, mainly as heat to their surroundings. In some cases, part of the energy absorbed 

can be reemitted as radiation, usually of longer wavelengths than the exciting light. This 

process is known as fluorescence [Lakowicz, 1983].  

 

The types of substances that exhibit fluorescence are normally those whose structure 

contains delocalized electrons present in conjugated double bonds. Fluorescence has the 

main advantage over other optical techniques of being extremely sensitive. Many 

applications of fluorescence rely on this fact to label small amounts of sample for 

detection, often allowing solute in the nanomolar range to be quantified. For example, the 

amount of released agent from a controlled delivery vehicle may be measured if the agent 

is fluorescent or it can be labeled with a fluorophore. Furthermore, the fluorescence of 

many fluorophores, e.g. tryptophan in proteins, is extremely sensitive to their surrounding 

environments. It enables fluorescence to be used as a sensitive structural probe in many 

biological systems [Guo et al., 2002]. 

 

In the most basic fluorescence spectroscopy experiments the sample is irradiated with light 

at or close to its absorption maximum, and the resulting fluorescence is measured at a 
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particular emission wavelength or as a function of emission wavelength (emission spectra). 

An emission spectrum is also often presented with an excitation spectrum where the 

fluorescence at a single wavelength is measured as a function of excitation wavelength. 

These basic measurements, which use a standard commercial fluorescence spectrometer, 

are often known as steady-state fluorescence measurements, to distinguish them from 

those of fluorescence lifetime, i.e. the average time the fluorophore spends in the excited 

state which requires specialized equipment to be measured [Jones et al., 1994]. 

 

1.3.3 Chromatography 

 

Chromatography is essentially a physical method of separation in which the components 

to be separated are distributed between two phases, i.e. the stationary phase and the mobile 

phase. The mobile phase percolates through the stationary phase in a definite direction. 

The chromatographic process occurs as a result of repeated sorption/desorption acts during 

the movement of the sample components along the stationary bed, and the separation is 

due to differences in the distribution constants of the individual sample components. For 

applications of analysis, the separated components enter detectors, such as UV-Vis 

spectrophotometer and fluorescence spectrophotometer, which can measure the amount of 

components at every moment. The information obtained from a chromatographic 

experiment is contained in the chromatogram, a record of the concentration or mass profile 

of the sample components as a function of the movement of the mobile phase. Information 

readily extracted from the chromatogram includes an indication of sample complexity 

based on the number of observed peaks, qualitative identification of sample components 

based on the accurate determination of peak position, quantitative assessment of the 
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relative concentration or amount of each peak, and an indication of column performance 

[Heftmann, 1967].  

 

A distinction between the principal chromatographic methods can be made in terms of the 

properties of the mobile phase. In gas chromatography the mobile phase is an inert gas, in 

supercritical fluid chromatography the mobile phase is a dense gas (fluid) which is above 

its critical temperature and pressure, and in liquid chromatography the mobile phase is a 

liquid of low viscosity. The stationary phase is generally a porous, granular powder in the 

form of a dense homogeneous bed packed into a tube (column) able to withstand the 

operating pressures employed. For thin layer chromatography the sorbent is spread as a 

thin, homogeneous layer on a flat glass or similar inert backing plate [C.F. Poole and S.K. 

Poole, 1991]. 

 

A most commonly used chromatography technique is high pressure liquid chromatography 

(HPLC). In this technique, a pump provides the high pressure required to push the liquid 

mobile phase through the chromatographic column. HPLC can be operated at various 

modes in terms of the dominant interactions between the mobile and stationary phases for 

the separation. Reversed phase mode utilizes the hydrophobic interactions while normal 

phase mode hydrogen bonding or polar interactions. The reversed phase is a phrase used to 

indicate that the stationary phase is less polar than the solvent, and normal phase indicates 

that the stationary phase is more polar. Reversed phase and normal phase HPLC 

predominate in the analysis of small organic molecules. For example, the concentration of 

an anticancer drug paclitaxel has been analyzed by reversed phase HPLC [Richheimer et 

al., 1992]. Lipids and surfactants can also be analyzed by this method [Swadesh, 1997]. In 
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the HPLC of size exclusion mode, the stationary phase contains pores of defined size 

distribution. Analytes larger than the pores are excluded from the pores and pass through 

the column more rapidly than smaller analytes. Size exclusion HPLC has been used to 

separate polymer molecules according to different molecular size [Pasch and Trathnigg, 

1997]. It can also be used to purify liposomes since the vesicles are much bigger than the 

encapsulated agents [Kreuter, 1994]. 

 

1.3.4 Thermal analysis 

 

Thermal analysis means the analysis of a change in a property of a sample, which is 

related to an imposed temperature alteration [Brown, 1998]. All thermal analysis 

instruments have features in common: a sample, contained in a suitable sample pan, is 

placed in a furnace and subjected to a desired temperature program. During this procedure, 

one or more properties of the sample are monitored by use of suitable transducers for 

converting the properties to electrical quantities. The variety of the techniques stems from 

the variety of properties that can be measured. Measurements are usually continuous and 

the heating rate is often, but not necessarily, linear with time. The results of such 

measurements are thermal analysis curves and the features of the curves (peaks, 

discontinuities, changes of slope, etc.) are related to thermal events in the sample 

[Hemminger, 1998].  

 

In thermogravimetry analysis (TGA), measurements of changes in sample mass with 

temperature are made using a thermobalance. The thermobalance is a combination of an 

electronic microbalance with a furnace, a temperature programmer and a computer for 
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control, which allows the sample to be simultaneously weighed and heated or cooled in a 

controlled manner, and the mass, time, temperature data to be captured. In differential 

thermal analysis (DTA), the difference in temperature between the sample and a reference 

material is recorded, while both are subjected to the same heating program. On the other 

hand, in differential scanning calorimetry (DSC), the sample and a reference material are 

maintained at the same temperature throughout the controlled temperature program, and 

any difference in the independent supplies of power to the sample and the reference is 

recorded against the programmed temperature. There are many similarities between DTA 

and DSC, including the superficial appearance of the thermal analysis curves obtained. 

Thermal events in the sample appear as deviations from the baselines, in either an 

endothermic or exothermic direction, depending upon whether the temperature of the 

sample is lower or higher than that of the reference (DTA), or whether more or less energy 

has to be supplied to the sample (DSC). Another common thermal analysis technique is 

thermomechanometry analysis (TMA), in which the expansion or contraction of the 

sample is measured as a function of temperature, while the sample is under compression, 

or tension, or negligible loads [Brown, 2001]. 

 

Thermal analysis has been applied on the study of chemical reaction kinetics, materials, 

pharmaceutical production and so on [Ford and Timmins, 1989, Hatakeyama and Quinn, 

1999, Speyer, 1994]. For drug delivery studies, as examples, (1) DSC/DTA can be used to 

determine the glass transition temperature of poly(esters), which represents a measure of 

the flexibility of the polymer chain and may be an indication of the ease of hydrolysis of 

the ester bonds [Baker, 1992]; (2) DSC/DTA are useful in evaluating the form of the drug 

in the polymeric delivery systems. The absence of an endotherm corresponding to drug 
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fusion is indicative of the drug being dispersed as either a molecular dispersion or a solid 

solution [Dubernet, 1995]; (3) Many microspheres are very porous and thermal analysis 

has proved useful in characterizing their internal pore structure. For instance, the 

endotherm of water at -15ºC in the polyamide microspheres was attributed to the melting 

of highly structured water within and around the microspheres [Dubernet, 1995]; (4) 

Castelli et al. found that the lowering of the phase transition temperature of lipid vesicles 

was proportional to the concentration of a drug diclofenac within the vesicle membranes. 

Thus, they claimed that it was feasible to monitor the release of the drug from polymeric 

microspheres to multilamellar lipid vesicles as a model biomembrane system by DSC 

[Castelli et al., 2001]. 

 

1.3.5 Light scattering 

 

Light that incidents on an ensemble of particles, such as crystals, aerosols, molecules, 

atoms, is partially deflected (scattered). The evaluation of the scattered light with regard to 

its intensity, wavelength, and direction often yields valuable information about the matter 

scattering light. Many different light scattering processes may occur and be used for 

analysis purpose. These processes may be classified to elastic and inelastic scattering. An 

elastic scattering process refers to an interaction without a permanent exchange of energy 

between the light and the matter. This restriction of energy exchange does not prohibit a 

change in direction, but prohibits a change in frequency. An inelastic process, on the other 

hand, leads to a permanent energy exchange and a change of frequency of the emitted 

radiation [Mayinger and Feldmann, 2001]. 
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Light scattering has been applied to analyze molecular weight, size and surface charge of 

colloid particles, diffusion coefficient, etc [Chia et al., 2001, Feng et al., 2002]. For 

example, the dynamic light scattering analysis utilizes the fact that the scattering particles 

undergo rapid thermal motions. These movements cause short-term fluctuations in the 

intensity of the scattered light. The intensity fluctuations (dynamics) of the scattered light 

are determined and analyzed. The results can be correlated to the above-mentioned 

parameters of colloid or polymer solution [Sun, 1994]. 

 

1.4 Thesis organization 

 

As discussed earlier, polymeric microspheres can be used to encapsulate and release both 

water-insoluble and water-soluble drugs. In Chapter 3 and Chapter 4 of the present thesis, 

polymeric microspheres were used for the controlled release of an anticancer agent, 

paclitaxel, which is water-insoluble, and a protein human serum albumin (HSA), which is 

water-soluble, respectively. Novel materials, such as polymers, organic solvents and 

additives, were applied and their effects on the physicochemical properties of the resulted 

microspheres were investigated. In Chapter 5, polymeric microspheres were used to 

encapsulate another major controlled drug delivery system, namely liposomes, to form a 

novel device: liposomes-in-microsphere (LIM) of biodegradable polymers. It was then 

extensively characterized in vitro. 
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CHAPTER 2 MATERIALS AND METHODS 

 

2.1 Chemicals 

 

Polymers: 

PLGA (L/G ratio=50:50, Mw=40000-75000) was from Sigma (USA);  

Poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA, 10% PEG, 

Mw=80000 or 50000) was a gift from Prof. X.M. Deng, Chengdu Institute of Organic 

Chemistry, Chinese Academy of Science, PR China; 

PEG (Mw=40000) was from Fluka (Germany); 

Poly(vinyl alcohol) (PVA, Mw=30000-70000) was from Sigma (USA); 

Chitosan (hydrochloride salt, Cat. No. FLA-40) was a gift from Koyo Chemical (Japan). 

 

Lipids: 

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

1,2-Dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), 

and Cholesterol were from Sigma (USA); 

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 

(DSPE-PEG 2000) was from Avanti Lipids (USA). 

 

Organic solvents: 

Dichloride methane (DCM) was from Tedia (USA); 

Ethyl acetate, 
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Cyclohexane, 

and Acetone were from Merck (Germany); 

Chloroform, 

and Methanol were from Fisher (UK). 

 

Others: 

Paclitaxel was from Hande Biotechnology Inc., PR China; 

HSA was from CSL (Australia); 

D-alpha tocopheryl polyethylene glycol 1000 succinate (Vitamin E TPGS) was from 

Eastman (USA); 

Calcein,  

Triton X-100,  

Sephadex gel (G-50-80), 

Phosphate buffered saline (PBS), 

and Phosphotungstic acid were from Sigma (USA); 

Sodium azide, 

and Sodium chloride were from Merck (Germany); 

Protein assay kit (Cat. No. 500-0002) was from Bio-Rad (USA); 

Milli-Q water and deionized water were produced by a Millipore water purification system 

(Millipore Corporation, USA). 

 

All the above chemicals were of the commercially highest grade. 
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2.2 Instruments 

 

Mechanical stirrer: Eurostar digital, IKA, Germany; 

Vortex mixer: Maxi Mix II, Thermolyne, USA; 

Homogenizer: Ultra-Turrax TP18/10, IKA, Germany; 

Probe sonicator: Microson™, Misonix, USA; 

Bath sonicator: Transsonic 460/H, Elma-Hans Schmidbauer GmbH & Co KG, Germany; 

Membrane extruder: LiposoFast™, Avestin, Canada; 

Centrifuge A: 5810R, Eppendorf, Germany; 

Centrifuge B: 2001, Kubota, Japan; 

Freeze dryer: Christ Alpha 1-2, Martin Christ, Germany; 

Shaker: GFL® 1086, Gesellschaft fur Labortechnik mbH, Germany; 

Transmission light microscope: Axiovert 135M, Carl Zeiss, Germany; 

SEM: JSM-5600LV, Jeol, Japan; 

Platinum coating machine: JFC-1300, Jeol, Japan; 

Cross-sectioning machine: CM3050, Leica, Austria; 

UV-VIS scanning spectrophotometer: UV-3101 PC, Shimadzu, Japan; 

XPS: AXIS His-165 Ultra, Shimadzu, Japan; 

Fluorescence spectrometer: Quantamaster™ GL-3300, Photon Technology International, 

USA; 

HPLC: LC 1100, Agilent, USA; 

HPLC column: reverse phase Inersil® ODS-3 column with inner diameter 150×4.6 mm 

and pore size 5 µm, GL Science, Japan; 

DSC: DSC 822e, Mettler Toledo, Switzerland; 
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Laser light scattering particle sizer: 90 Plus, Brookhaven Instruments, USA; 

Zeta potential analyzer: Zeta Plus, Brookhaven Instruments Corporation, USA. 

 

2.3 Single emulsion process 

 

The single emulsion process was used to prepare paclitaxel-loaded microspheres at 25°C 

and the atmospheric pressure. Certain amount of paclitaxel was dissolved in the organic 

solvent (DCM, in some cases mixed with acetone, 5 ml) with the polymer (PLA-PEG-

PLA or PLGA, 100 mg), which was then poured rapidly into 100 ml of PVA solution (2% 

w/v) whilst stirred at 800 rpm for 2 hrs (mechanical stirrer). The resulted o/w emulsion 

was further stirred overnight at 400 rpm to completely extract/evaporate the organic 

solvent, leaving behind solid microspheres. Afterwards the final product was obtained by 

centrifugation (centrifuge A, 8000-9000 rpm, 10 min), washing and freeze drying. 

Because the presence of emulsifier on the microsphere surface might disturb the detection 

of PEG in the surface chemistry analysis, it was necessary to completely remove PVA in 

the washing step. To do so, the above washing process was carefully repeated for at least 5 

times. 

 

2.4 Double emulsion process 

 

The double emulsion process was used to prepare HSA-loaded microspheres at 25°C and 

the atmospheric pressure. HSA (100 µl) aqueous solution (50 mg/ml) was dispersed into 

the organic phase, which consists of 150 mg polymer (PLGA or PLA-PEG-PLA) 

dissolved in 2 ml organic solvent (DCM, ethyl acetate or acetone), by probe sonication for 
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30 s at an energy output of 7 W, resulting in a water-in-oil (w/o) emulsion. When 

applicable, an additive was dissolved in either the water (for PEG) or the oil phase (for 

Vitamin E TPGS) before the emulsification. The w/o emulsion was injected drop by drop, 

with a 3 ml dipper, into 50 ml 2% PVA aqueous solution and underwent either mechanical 

stirring (800 rpm or 1200 rpm, 2 min) or homogenization (3 pulses). The obtained w/o/w 

emulsion was poured into 450 ml 2% PVA aqueous solution. Mechanical stirring at 400 

rpm was performed for 2.5 h to extract/evaporate the organic solvent, and solid 

microspheres were formed. Final product was obtained after filtration, washing and freeze-

drying. To monitor the preparation process, samples at various stages were collected and 

observed with a transmission light microscope. 

 

2.5 Modified double emulsion process 

 

As we will discuss in detail in Chapter 5, a ‘modified double emulsion process’ was used 

to avoid the damage caused by the sonication treatment to the encapsulated fragile agents 

such as liposomes. Compared with the above-mentioned double emulsion process, the 

modified process is different in the following two points: (1) vortex mixing (2000 rpm, 10 

min) was used instead of sonication to form the w/o emulsion, (2) because insufficient 

mechanical treatment such as vortex mixing could cause unstable w/o emulsion, one or 

more of the following newer materials were used to maintain the stability of the w/o 

emulsion: PLA-PEG-PLA instead of PLGA as the polymer, ethyl acetate and acetone (or 

their mixtures with DCM) instead of DCM as the organic solvent, emulsifiers used in the 

formation of w/o emulsion such as PVA (2% w/v, dissolved in the inner water phase) or 
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Vitamin E TPGS (10% w/w, dissolved in the oil phase). The w/o/w emulsion was formed 

by mechanical stirring at 800 rpm. 

 

2.6 Preparation of liposomes 

 

Liposomes were prepared by the film hydration method (multilamellar vesicles, MLVs) 

followed by membrane extrusion (large unilamellar vesicles, or LUVs). Briefly, certain 

amount of lipids dissolved in organic solvents (chloroform or its mixture with methanol) 

were transferred to a small glass vial, and dried by nitrogen gas, to form a thin lipid film 

on the wall of the vial. After the film was stored in vacuum at 4○C overnight to remove the 

residual organic solvents, it was hydrated with an appropriate volume of calcein solution 

(180 mM) for 5 h. Vortex mixing (2000 rpm, 10 min) was then performed in the presence 

of a few glass beads to form MLVs. LUVs were obtained by downsizing the MLVs with a 

membrane extruder with the liposome size controlled by the membrane pore size. Gel 

filtration was carried out to separate the MLVs or LUVs from the non-encapsulated 

calcein. 

 

2.7 Coating of liposomes 

 

Hydrophilic polymer coating was used to protect liposomes from organic solvents when 

they were encapsulated into polymeric microspheres. To coat liposomes with PEG, DSPE-

PEG 2000 was mixed with the other lipids before they were dissolved in organic solvents 

for liposome preparation. The concentration of DSPE-PEG 2000 in the total lipid amount 

was 5%. To coat liposomes with PVA or chitosan, 2 ml liposomes were mixed with 6 ml 
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aqueous solution of PVA or chitosan and incubated at 4○C overnight. The final 

concentration of PVA or chitosan in the aqueous phase was 1%, unless stated otherwise. 

 

2.8 SEM 

 

The surface morphology of microspheres was examined by SEM, after the samples were 

coated with platinum. The platinum coating machine came together with the SEM. 

According to the manufacturer, platinum has advantages over gold. It can result in higher 

conductivity of coated sample surface, which can lead to higher quality of the SEM image. 

For each sample the diameter of at least 100 microspheres was measured and averaged by 

a computer program SMILE VIEW, which came together with the SEM equipment. To 

view the interior of the microspheres, the samples were cross-sectioned and SEM was then 

performed. 

 

To visualize the liposomes, a drop of liposome solution of around 20 µl was dispersed 

onto a conductive tape which adhered to the top surface of a copper stud. It was then 

frozen in liquid nitrogen for 10 min and dried in a freeze drier. After negative-stained with 

1% phosphotungstic acid and coated with platinum, the sample was viewed with SEM. 

 

2.9 UV-Vis spectrophotometer 

 

The HSA concentration in aqueous solution was determined using a UV-Vis 

spectrophotometer by the Bradford method, a dye-binding assay in which a differential 

color change of a dye occurs in response to various concentrations of proteins [Bradford, 
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1976]. The protocol used was the Bio-Rad microassay procedure [Bio-Rad company]. 

Briefly, 800 µl of each sample solution was mixed with 200 µl of dye reagent concentrate 

and incubated at room temperature for at least 5 min but no more than 1 h. The absorbance 

was then measured at 595 nm. 

 

2.10 XPS 

 

XPS was used to analyze the surface chemistry of the microspheres. A full spectrum scan 

was conducted over a binding energy of 0 to 1100 eV at a passing energy of 80 eV. 

Detailed analysis for C1s, O1s, N1s of the samples was conducted over 279-292 eV, 525-

537 eV and 392-404 eV, respectively with a pass energy of 40 eV. Curve fitting was 

performed by a computer program XPSpeak provided by the equipment manufacturer. 

This software allows manipulation of the peak positions, full width at half maximum 

values, peak area and the Guassian-Lorentzian function. 

 

2.11 Fluorescence spectrometer 

 

Calcein is commonly used as a fluorescence probe of the aqueous core of liposomes due to 

its special self-quenching property [Gregoriadis, 1984b]. Below a certain concentration 

(around 2 µM), nice linear relationship exists between the fluorescence intensity and 

calcein concentration (excitation wavelength = 495 nm, emission wavelength = 516 nm). 

If the calcein concentration is high enough, however, the interactions among the molecules 

will cause fluorescence quenching, i.e. dramatic decrease of fluorescence intensity. In 

particular, when the concentration goes up to 20 mM, the fluorescence intensity will 
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become negligible. Therefore, in our case, the calcein inside the liposomes (180 mM) 

wouldn’t lead to appreciable fluorescence. However, when the calcein was released from 

the liposomes, it would be diluted, leading to the appearance of fluorescence. By adjusting 

the concentration of released calcein to the linear range, the amount of released calcein 

from the liposomes could be analyzed by a fluorescence spectrometer. The encapsulated 

calcein inside the liposomes was analyzed by measuring the fluorescence intensity after 

breaking the liposomes with Triton X-100. 

 

2.12 HPLC 

 

Paclitaxel concentration in aqueous solution was determined by HPLC. The mobile phase 

consisting of a mixture of acetonitrile and Milli-Q water (50/50, v/v) was delivered at a 

flow rate of 1 ml/min. A 50 µl aliquot of the samples was injected with an autosampler. 

The column effluent was detected at 227 nm with a variable wavelength detector. 

 

2.13 DSC 

 

The physical state of paclitaxel inside the microspheres was characterized by DSC. The 

samples were sealed in aluminum pans with lids. The samples were purged with pure dry 

nitrogen at a flow rate of 2 ml/min. A temperature ramp speed was set at 10 K/min and the 

heat flow was recorded from 273-523 K. Indium was used as the standard reference 

material to calibrate the temperature and energy scales of the DSC instrument. 
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2.14 Laser light scattering for particle sizing 

 

The liposome samples of 300 µl were diluted to 3 ml before the measurements. Three 

parameters were recorded: effective diameter, which indicated the particle size; 

polydispersity, which indicated the particle size distribution; and counting rate, which 

indicated the number of liposomes. 

 

2.15 Zeta potential analysis 

 

Zeta potential is an indicator of the surface charge of particles in a colloid dispersion, 

which affects the velocity of the particle movement and can also be analyzed by the 

method of light scattering [Morrison and Ross, 2002]. Surface charge of the microspheres 

and liposomes was examined by a zeta potential analyzer. For the microspheres, the 

samples were dispersed in PBS buffer (pH=7.4) at the concentration of 1.5±0.3 mg/ml and 

slightly sonicated in a bath sonicator for 1 min before the analysis. For the liposomes, the 

samples of 200 µl were diluted to 2ml before the analysis. 

 

2.16 Integrity of liposomes 

 

To investigate the integrity of liposomes after the treatment by an organic solvent, the 

solvent (5 ml) was poured to 1 ml emulsion of calcein-loaded liposomes and they were 

mixed by a vortex mixer (2000 rpm, 10 min). The water phase was collected after it was 

completely separated from the organic phase. Two properties, namely the liposome 

number and the calcein inside the liposomes, were analyzed before and after the treatment 
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by the organic solvent by laser light scattering and fluorescence spectrometer, respectively. 

The change of these two properties indicated the damage of the liposomes by the organic 

solvent. As described earlier, the number of liposomes was indicated by the counting rate 

in the light scattering sizing measurement. Higher counting rate implies more vesicles 

present. The calcein remaining in the liposomes after the treatment of the organic solvent 

was analyzed by subtracting the calcein release caused by liposome breakage, which was 

calculated by the fluorescence intensity, from the total calcein amount inside the 

liposomes without the treatment by organic solvents. 

 

The integrity of liposomes in LIMs was examined by SEM, light scattering and 

fluorescence spectrometer. The liposomes inside LIMs were visualized by SEM after the 

polymer matrix was cut apart. The particle size and calcein leakage after the liposomes 

were released from LIMs were measured by light scattering and fluorescence spectrometer 

respectively. The results were compared with those obtained before the liposomes were 

encapsulated. 

 

2.17 Encapsulation efficiency 

 

2.17.1 Encapsulation efficiency of paclitaxel in microspheres 

 

The encapsulation efficiency is defined as the ratio of the amount of encapsulated drug to 

that of the drug used for microsphere preparation. To determine the paclitaxel content in 

the microspheres, 3 mg of paclitaxel-loaded microspheres were dissolved in 1 ml DCM. A 

mixture of acetonitrile and Milli-Q water (50/50, v/v) was then added. A nitrogen gas 
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stream was introduced to evaporate DCM until a clear solution was obtained. The solution 

was analyzed by HPLC for paclitaxel concentration. The above measurements were 

performed in duplicate. The deviation between the two results was found to be less than 

10%. 

 

2.17.2 Encapsulation efficiency of HSA in microspheres 

 

Microspheres (5 mg) were dissolved in 0.25 ml DCM, which was then transferred into an 

Eppendorf tube. Milli-Q water (0.5 ml) was added and the tube was vortexed for 5 min to 

extract the HSA. Subsequently the system underwent centrifugation (centrifuge B) at 3000 

rpm for 5 min to separate the oil and water phases. The latter was collected for protein 

assay by the Bradford method. The processes of extraction and protein assay were 

repeated 4 times. The encapsulation efficiency of microspheres, which is defined by the 

following equation, was determined in duplicate. The deviation between the two results 

was found to be less than 10%. 
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    (Equation 2.1)  

 

EE – HSA encapsulation efficiency inside microspheres 

Ci – HSA concentration in the water phase of each extraction 

Vi – volume of water phase of each extraction 

WMS – weight of microspheres used for EE analysis 

WHSA – weight of HSA used in the microsphere preparation process 



  Chapter 2 Materials and Methods 
──────────────────────────────────────────────── 

 
Ruan Gang: PhD thesis  41 

Wpolymer – weight of polymer used in the microsphere preparation process 

Wadditive – weight of additive used in the microsphere preparation process 

 

2.17.3 Encapsulation efficiency of liposomes in LIMs 

 

The liposome encapsulation efficiency inside LIMs was calculated by subtracting the 

amount of liposome loss during the modified double emulsion process from the total 

amount of liposomes used for LIM preparation and dividing the difference by the latter. 

Duplicate measurements were performed. The deviation between the two results was 

found to be less than 10%. To measure the amount of liposomes not encapsulated in the 

microspheres, the outer water phase in the w/o/w emulsion and the water used for solvent 

removal and washing were collected after the LIMs were obtained. These liposomes were 

treated with 2% Triton X-100 at 60○C for 1 h to break the liposomes to make the calcein 

released. The amount of liposomes not encapsulated was then obtained by measuring the 

fluorescence intensity. Two experiments were further performed to ensure that no 

appreciable calcein was released from the liposomes before the treatment of Triton X-100 

and that calcein was completely released after the treatment. 

 

2.18 In vitro release 

 

2.18.1 In vitro release of paclitaxel from microspheres 

 

The experiments were performed in duplicate. The deviation between the two results was 

found to be less than 10%. Microspheres (10 mg) were placed in Eppendorf tubes and 
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incubated in 10 ml release medium (PBS buffer, pH=7.4) under agitation in a shaker (37 

°C, 110/min). At desirable time intervals, the microsphere suspensions were centrifuged at 

10000 rpm for 10 min (centrifuge A). The supernatant (10 ml) was withdrawn and 

replaced with 10 ml fresh release medium. The amount of paclitaxel released was 

determined by measuring drug concentration in the supernatant. To determine the drug 

content in the supernatant, 1 ml DCM was added to extract paclitaxel. The organic phase 

was collected and left in a fume cupboard to evaporate DCM. This was followed by 

adding 3 ml of mixture of acetonitrile and water (50/50, v/v) to dissolve the drug. HPLC 

was then performed to determine the quantity of the drug. 

 

To determine the extraction efficiency of paclitaxel from the release medium to DCM, a 

known amount of paclitaxel was subjected to the same procedure as above. The extraction 

efficiency obtained here was then used as a correction factor for the data obtained with the 

microspheres.  

 

2.18.2 In vitro release of HSA from microspheres 

 

The experiments were performed in duplicate. The deviation between the two results was 

found to be less than 10%. Microspheres (10 mg) were placed in Eppendorf tubes and 

incubated in 1 ml release medium (PBS buffer, 0.02% sodium azide, pH=7.4) under 

agitation in a shaker (37°C, 110/min). At desirable time intervals, the microsphere 

suspensions were centrifuged at 3000 rpm for 10 min (centrifuge B). The supernatant (1 

ml) was withdrawn and replaced with 1 ml fresh release medium. The amount of protein 
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released was determined by measuring protein concentration in the supernatant using the 

Bradford method. 

 

2.18.3 In vitro release of liposomes from LIMs 

 

The experiments were performed in duplicate. The deviation between the two results was 

found to be less than 10%. LIMs (10 mg) were placed in Eppendorf tubes and incubated in 

1 ml release medium (PBS buffer, 0.02% sodium azide, pH=7.4) under agitation in a 

shaker (110/min, 37°C). At desirable time intervals, the LIM suspensions were centrifuged 

at 3000 rpm for 10 min (centrifuge B). The supernatant (1 ml) was withdrawn and 

replaced with 1 ml fresh release medium. The liposome amount in the release medium was 

determined by measuring the fluorescence of calcein after treating the liposomes with 2% 

Triton X-100 at 60°C for 1h as described in Sec 2.17.3. 
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CHAPTER 3 PACLITAXEL-LOADED MICROSPHERES 

 

3.1 Introduction 

 

Cancer is a group of diseases which affect the cells of the body, causing them to grow too 

rapidly and without order, forming tumors. Tumors are either benign, meaning that they 

stay confined to the part of the body where they formed, or they are malignant, invading 

surrounding tissue and destroying healthy cells. Such malignant tumors may result in cells 

breaking off and spreading through the bloodstream to other parts of the body to create 

new tumors. This process of metastasis can have fatal results [Chabner and Longo, 1996]. 

At present, cancer is the number one cause of death in Singapore and the number two in 

the United States [Chia, 1996].  

 

Since the former US president Richard Nixon declared war on cancer 30 years ago, 

numerous anticancer agents have been developed. Among them, paclitaxel is believed to 

be one of the best discovered from nature (see Fig. 3.1 for its molecular structure). No 

other chemotherapeutic agent except penicillin has generated so much interest 

[Panchagnula, 1998]. It has been widely applied to treat various cancers, especially breast 

cancer and ovarian cancer [Huizing, 1995, Lopes et al., 1993]. Its unique action 

mechanism involves binding to microtubules, forming dysfunctional microtubules and 

thus leading to cell death [Horwitz, 1992]. In this Chapter, paclitaxel was used as a 

prototype of anticancer drugs. 
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Figure 3.1 Molecular structure of paclitaxel. The number 7 near the nitrogen atom corresponds to the peak 
number in the XPS analysis of Sec. 3.2.3. 

 

There are two major hurdles for clinical application of paclitaxel. One is its availability. 

Paclitaxel was originally extracted from the bark of a rare and slowly growing Pacific yew 

tree or Western yew tree (Taxus Bevifolia). For the chemotherapy of each patient, four 

trees of more than 100 years old would have to be sacrificed to obtain two grams of the 

drug. This is not affordable for the nature. Total synthesis of paclitaxel has been achieved, 

which is however too complicated and its price is thus extremely high [Holton et al., 1994, 

Nicolaou et al., 1994b]. A most promising solution is semi-synthesis, in which the drug is 

produced from needles and twigs of more abundant English yew trees or Chinese red bean 

yew trees [Colin et al., 1990]. Another hurdle to apply paclitaxel to treat cancers is the 

difficulty in its clinical administration. Due to the low aqueous solubility of the drug, an 

adjuvant Cremophor EL has to be used. Paclitaxel in Cremophor EL called Taxol® is the 

only available clinical form of paclitaxel and has been reported to be responsible for 

various serious side effects such as hypersensitive reactions, nephrotoxicity, neurotoxicity 

and cardiotoxicity [Liebmann et al., 1993]. In recent years, various controlled delivery 

forms, such as polymeric micro/nanospheres [Dordunoo et al., 1995], liposomes [Sharma 
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and Straubinger, 1994], micelles [Onyuksel et al., 1994], parenteral emulsion [Lundberg, 

1997], cyclodextrins [Sharma et al., 1995], and prodrugs [Nicolaou et al., 1994a], have 

been investigated to increase the solubility, to minimize the side effects as well as to avoid 

the use of the toxic adjuvant. Among these alternative delivery systems, polymeric 

micro/nanospheres have attracted a lot of interests.  

 

As discussed earlier, the single emulsion technique is commonly used to encapsulate 

water-insoluble drugs such as paclitaxel into polymeric microspheres. In most of the 

published papers, PLGA and paclitaxel were dissolved in the organic solvent DCM to 

form the oil phase. The oil phase was then dispersed into a large volume of water phase in 

the presence of the emulsifier PVA. After the organic solvent was removed by 

extraction/evaporation, solid microspheres were formed with the drug encapsulated 

[Harper et al., 1999, Liggins et al., 2000, Wang et al., 1996]. Our group has been pursuing 

to improve the above recipe and process. In the previous work, our group has applied 

natural emulsifiers such as phospholipids and Vitamin E TPGS in place of PVA to 

improve the biocompatibility and the encapsulation efficiency of the delivery vehicles 

[Feng and Huang, 2001, Feng et al., 2002, Mu and Feng, 2002], and the spray drying 

technique in place of solvent extraction/evaporation for larger-scale production of 

micro/nanospheres [Mu and Feng, 2001]. The focus of this Chapter was to use a new kind 

of polymer, the triblock copolymer PLA-PEG-PLA, to replace the commonly used PLGA. 

The molecular structure of PLA-PEG-PLA is shown in Fig. 3.2. We expected some 

advantages of PLA-PEG-PLA over PLGA. 
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Figure 3.2 Molecular structure of PLA-PEG-PLA. The numbers 0, 1, 2, 3 near the carbon atoms correspond 
to the peak numbers in the XPS analysis of Sec. 3.2.3. 

 

The release of paclitaxel from PLGA micro/nanospheres was found extremely slow, 

because this drug is highly hydrophobic and PLGA is also hydrophobic. Our group 

previously reported that only 50% of the drug could be released within 3 months [Feng 

and Huang, 2001, Mu and Feng, 2001]. However, the continuous release of an anticancer 

agent from a controlled delivery device for one week to one month is usually required for 

effective treatment of the cancer [Wang et al., 1996]. We expected that incorporation of a 

hydrophilic segment such as PEG into the hydrophobic poly(lactic acid) (PLA) chain, 

which forms the triblock copolymer PLA-PEG-PLA, would greatly facilitate the drug 

release. Li et al. reported the use of PLA-PEG-PLA for vaccine delivery [Li et al., 2000]. 

Nevertheless, it has not yet been applied for controlled release of hydrophobic drugs. 

Another potential advantage of PLA-PEG-PLA would be the presence of hydrophilic 

segment PEG on the surface of the microspheres formed. It is believed that increase of 

surface hydrophilicity of delivery vehicles normally leads to better biocompatibility, 

because most of the biological environment is hydrophilic in nature and biocompatibility 

appears to be correlated directly with the degree of hydrophilicity that a surface exhibits 

[LaPorte, 1997]. In this Chapter, we were to prepare paclitaxel-loaded PLA-PEG-PLA 

microspheres by the single emulsion process, to characterize the product for its 
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physicochemical properties and in vitro release behavior, and to investigate the effects of 

various material parameters. 

 

3.2 Results and discussions 

 

3.2.1 Preparation of microspheres 

 

Six microsphere samples of different compositions were prepared by the single emulsion 

method (Table 3.1). In order to examine the effects of different polymers, PLGA (L/G 

ratio 50/50, Mw 40000-75000), PLA-PEG-PLA (10% PEG, Mw 50000) and PLA-PEG-

PLA (10% PEG, Mw 80000) were used in Samples Pm1, Pm2 and Pm3, respectively. The 

L/G ratio of 50/50 was selected for Pm1 because it is well documented that PLGA at this 

L/G ratio possesses the fastest degradation rate and results in fastest drug release rate from 

the microspheres [Anderson and Shive, 1997]. Different drug loading amount and organic 

solvents were used in samples Pm4 to Pm6 to examine their effects on the properties of 

the microspheres formed. 

 

3.2.2 Particle size, encapsulation efficiency and colloidal stability 

 

In Table 3.1 the particle size, encapsulation efficiency and zeta potential of the 

microsphere samples are listed against the polymer, the organic solvent used and the drug 

loading. It can be seen that the average particle size of all samples was 13-23 µm, which 

meets the requirement of chemoembolization for particle size [Dass and Burton, 1999]. In 
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fact, the chemoembolization of PLGA microspheres has been shown to effectively 

blockade the blood supply of a tumor [Wang et al., 1997].  

 

Table 3.1 Samples of paclitaxel-loaded microspheres. The drug loading is defined as the ratio of the drug 
weight and the sample weight. 

 
Sample 

number 

Composition  

(polymer/solvent/drug loading w/w) 

Particle size 

(µm) 

Encapsulation 

efficiency (%) 

Zeta potential 

(mV) 

Pm1 PLGA/DCM/5% 13.72±5.93 74.18 -36.37±2.85 

Pm2 PLA-PEG-PLA50000/DCM/5% 22.14±10.00 64.94 -0.21±0.00 

Pm3 PLA-PEG-PLA80000/DCM/5% 21.18±7.47 73.28 -28.95±0.90 

Pm4 PLA-PEG-PLA80000/DCM/8% 22.15±10.40 81.55 -30.91±0.77 

Pm5 PLA-PEG-PLA80000/DCM/10% 21.84±10.20 81.53 -30.87±1.00 

Pm6 PLA-PEG-PLA80000/ 

50% DCM+50% acetone/5% 

18.42±10.40 73.93 -22.39±1.41 

 

Shown in Fig. 3.3 is the calibration curve of paclitaxel concentration vs. peak area in 

HPLC analysis, which was used in the measurement of encapsulation efficiency and in 

vitro release of the drug. The linear range is from 49.6 ng/ml to 496 µg/ml. Within this 

range 10 data points were recorded. The R2 value is 0.9999998.  

 

The encapsulation efficiency of the microspheres ranged from 64% to 82%. In general, 

microencapsulation of hydrophobic drugs such as paclitaxel is relatively easy with 

hydrophobic polymers such as PLGA and PLA-PEG-PLA since loss of the drugs to the 

water phase occurs less likely in comparison with hydrophilic drugs. 
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Figure 3.3 Calibration curve of HPLC analysis of paclitaxel 
 

Colloidal stability of the microspheres is important because they are supposed to be 

delivered as a colloidal form. The colloidal stability was analyzed by measuring zeta 

potential of the microspheres. Larger absolute value of zeta potential indicates better 

colloidal stability [Sernelius, 2001]. As can be seen from Table 3.1, the zeta potentials of 

all samples were negative, implying that the microsphere surface was negatively charged. 

This should be attributed to the presence of ionized carboxyl groups, such as those from 

lactic acid or glycolic acid, on the microsphere surface since PEG is actually uncharged. In 

general, the zeta potential of PLA-PEG-PLA microspheres (Pm2 to Pm6) was less 

negative than that of PLGA microspheres (Pm1), presumably because in PLGA 

microspheres both the lactic acid and glycolic acid segments contribute to the surface 
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charge while in PLA-PEG-PLA microspheres, only the lactic acid segments lead to 

negative charge. Surprisingly enough, the sample of PLA-PEG-PLA with lower Mw had 

an especially low absolute value of zeta potential (sample Pm2), implying very low colloid 

stability. In fact, serious aggregation was observed by SEM for this sample (image not 

shown). Therefore, this sample was not selected in the following experiments. 

Nevertheless, the PLA-PEG-PLA microsphere samples having Mw 80000 were 

sufficiently stable for drug delivery application (Pm3 to Pm6) due to the fact that their zeta 

potential was between –31 mV and -22 mV. In general, these values are considered to be 

associated with stable colloid [Dobias, 1993]. 

 

3.2.3 Surface chemistry 

 

As shown in Fig. 3.1 and 3.2, paclitaxel has nitrogen element in its chemical structure 

while PLA-PEG-PLA doesn’t have any. Therefore, the N1s region of XPS data was used 

to determine whether the drug was present on the surface of the paclitaxel-loaded PLA-

PEG-PLA microspheres. The XPS N1s region of the pure paclitaxel and the PLA-PEG-

PLA microspheres is shown in Fig. 3.4 (A) and (B), respectively. It is clear that the 

characteristic peak of paclitaxel (peak number 7, binding energy 398.5 eV) was not 

detected on the surface of PLA-PEG-PLA microspheres, which implies that the drug 

present on the microsphere surface was negligible. 

 

The XPS C1s regions were used to determine the distribution of PEG segment on the 

microsphere surface. Thermodynamically, the hydrophilic PEG segment tends to migrate 

to the surface of particles formed by copolymers between PEG and PLA, to minimize the 
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contact between hydrophilic and hydrophobic segments, forming a micellar structure with 

the particle surface all covered by PEG. However, the actual percentage of PEG on the 

particle surface depends on many factors such as the configuration and composition of the 

copolymers and the size of the particles. Fig. 3.4 (C) and (D) show the XPS C1s region of 

the pure material of PLA-PEG-PLA and the paclitaxel-loaded PLA-PEG-PLA 

microspheres respectively. It can be seen that the shape of XPS spectra of the pure 

polymer and the microspheres is virtually identical. Curve fitting by the software XPSpeak 

showed that the percentage of area for the characteristic peak of PEG (peak number 2, 

binding energy around 284.9 eV) was approximately 13%. These results imply that the 

PLA-PEG-PLA microspheres didn’t form the micellar structure, since otherwise the 

percentage of characteristic PEG peak would be 100%. In other words, part of the PEG 

segment remained in the interior of the microspheres while the other located on the surface. 

In contrast to our results described above, it has been reported that the diblock PLA-PEG 

nanoparticles resulted in the micellar structure [Kim et al., 1999, Kim et al., 2001]. This 

might be because the diblock polymer and small particle size allowed PEG to readily 

migrate to the surface of the particles. The presence of PEG in the interior of our 

microspheres might be advantageous for fast drug release, as will be discussed in the next 

Section. 

 

The surface modification of the microspheres caused by PEG could improve the 

biocompatibility of the delivery vehicle as discussed in Sec. 3.1. It should be reasonable to 

predict that increasing the amount of PEG monomer in the synthesis of the PLA-PEG-

PLA copolymer could increase the amount of PEG on the microsphere surface, leading to 

better biocompatibility. 
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(A) XPS N1s region of paclitaxel 
 

 

(B) XPS N1s region of paclitaxel-loaded PLA-PEG-PLA microspheres (Pm3) 
 

Peak 
number 

Binding 
energy (eV) 

Percentage of 
peak area (%) 

7 398.457 100 

Peak 
number 

Binding 
energy (eV) 

Percentage of 
peak area (%) 

7 398.457 0 
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(C) XPS C1s region of PLA-PEG-PLA polymer 
 

 

(D) XPS C1s region of paclitaxel-loaded PLA-PEG-PLA microspheres (Pm3) 
 

Figure 3.4 XPS spectra of the pure materials and paclitaxel-loaded microspheres. The table in each figure 
presents the percentage of the peak area. The peak numbers in the tables correspond to the numbers in Fig. 

3.1 and 3.2. The XPS data of all PLA-PEG-PLA microsphere samples (Pm2-Pm6) were found to be virtually 
the same. 

 

 

Peak 
number 

Binding 
energy (eV) 

Percentage of 
peak area (%) 

0 287.947 20.7 
1 285.850 25.0 
2 284.845 13.3 
3 283.714 41.0 

 

Peak 
number 

Binding 
energy (eV) 

Percentage of 
peak area (%) 

0 287.850 21.0 
1 285.753 25.3 
2 284.851 12.3 
3 283.617 41.4 
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3.2.4 Surface and internal morphology 

 

The morphology of polymeric microspheres is well-known to be a critical factor to affect 

the drug release kinetics [Fan and Singh, 1989]. It was found that the presence of PEG 

segment within the PLA chains could significantly alter the surface and internal 

morphology of the microspheres. As shown in Fig. 3.5 (1) and (2), the PLGA 

microspheres possess smooth surface and dense interior. This is understandable since the 

o/w emulsion with the oil core formed by the water-insoluble polymer, the water-insoluble 

drug and the organic solvent should lead to dense particles formed after the organic 

solvent is removed. In contrast, the surface of the PLA-PEG-PLA microspheres was 

coarse. Pores were seen inside the microspheres and distributed more or less evenly across 

the entire cross-section (Fig. 3.5 (3) and (4)). This could be attributed to the presence of 

the PEG segments in the interior of PLA-PEG-PLA microspheres as shown by XPS 

analysis (Fig. 3.4), which allows the water phase to enter the PLA-PEG-PLA microspheres 

during the emulsification and solvent removal process.  

 

The porosity of the PLA-PEG-PLA microspheres could be further adjusted by mixing 

DCM with a water-soluble solvent acetone. As shown in Fig. 3.5 (5) and (6), the presence 

of acetone caused coarser surface and more porous interior of the microspheres, 

presumably due to a ‘local explosion’ phenomenon caused by fast extraction of the water-

soluble acetone to the water phase in the microsphere preparation process [Arshady, 1991]. 

In addition, the SEM results showed that different drug loading did not significantly alter 

the morphology of the microspheres (images not shown). 
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Figure 3.5 Surface and internal morphology of paclitaxel-loaded microspheres. (1) (2): Pm1, PLGA/100% 
DCM; (3) (4): Pm3, PLA-PEG-PLA80000/100% DCM; (5) (6): Pm6, PLA-PEG-PLA80000/50% DCM + 

50% acetone. 
 

3.2.5 Drug state in microspheres 

 

DSC was used to analyze the physical state of paclitaxel inside microspheres. As shown in 

Fig. 3.6, the melting peak of paclitaxel crystal appeared at 496.2K (thermogram 1), which 

was consistent with the result of Liggins et al. [Liggins et al., 1997]. This peak was also 
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detected when the drug amount was reduced to 0.4 mg (thermogram 2), which was the 

amount of paclitaxel found in 4 mg microsphere sample Pm5. However, after paclitaxel 

was encapsulated into the microspheres (sample Pm5), its melting peak disappeared, 

indicating that in the microspheres the drug existed as amorphous form rather than crystal 

(thermogram 3). This was also the case for the other microsphere samples (Pm1, Pm3, 

Pm4, Pm6). Therefore, among the three common drug release mechanisms from 

polymeric microspheres [Fan and Singh, 1989], drug dissolution in the polymer matrix 

was negligible compared with drug diffusion and polymer degradation in the paclitaxel-

loaded microspheres. 
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Figure 3.6 DSC thermograms of (1) 4 mg paclitaxel, (2) 0.4 mg paclitaxel, and (3) 4 mg PLA-PEG-PLA 
microspheres containing 10% paclitaxel (Pm5). 
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3.2.6 In vitro release 

 

PLA-PEG-PLA microspheres resulted in significantly faster release of the drug from the 

microspheres compared with that from PLGA samples (Fig. 3.7 (A)). This might be, at 

least partially, due to the porous morphology of the PLA-PEG-PLA microspheres (Fig. 

3.5). Their porous structure appeared to be able to further facilitate the paclitaxel release 

with addition of acetone into the organic solvent, which has been shown earlier to increase 

the microsphere porosity (Fig. 3.5) and thus lead to faster release. The paclitaxel release 

level of sample Pm6 (50% acetone) reached 49.6% after 30 days of sustained release. 

 

The effect of drug loading amount on the drug release rate from the microspheres 

appeared to vary depending on the drugs and polymers used. Even in the case of the same 

system, i.e. paclitaxel-encapsulated PLA/PLGA microspheres, the results reported from 

different laboratories could be different. Wang et al. reported decreasing release rate when 

drug loading was increased [Wang et al., 1996], while Liggins et al. reported an opposite 

trend [Liggins et al., 2000]. Fig. 3.7 (B) shows the in vitro release curves of our paclitaxel 

loaded PLA-PEG-PLA microsphere samples Pm3-Pm5, which had different paclitaxel 

loading amount. It can be seen that a higher drug loading resulted in a slower release. 

Because the drug dissolution in the PLA-PEG-PLA microspheres was negligible, as 

shown by the DSC results, and the polymer degradation should be similar for these three 

samples, the effect of drug loading amount on the in vitro release profile could be 

attributed to the change of drug diffusion rate caused by the different drug loading levels. 

In the single emulsion process, paclitaxel is completely soluble in DCM and evenly 

distributed in the polymer matrix. Different amount of paclitaxel might affect the oil 
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droplet formation and solvent removal, thereby leading to different tortuosity inside the 

microspheres, which can thus give rise to different drug diffusion rate. 
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Figure 3.7 In vitro release of paclitaxel from polymeric microspheres 
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3.3 Summary 

 

In this Chapter, paclitaxel-loaded microspheres made of the biocompatible and 

biodegradable polymer PLA-PEG-PLA were prepared by the single emulsion technique. 

The microspheres of various compositions were characterized with regard to the particle 

size, the encapsulation efficiency, the colloidal stability, the surface chemistry, the surface 

and internal morphology, the physical state of the drug in the polymeric matrix and the in 

vitro release kinetics. The physicochemical properties of the PLA-PEG-PLA microspheres 

were compared with those of the conventional PLGA microspheres. The effects of 

molecular weight of PLA-PEG-PLA, the presence of acetone in the organic solvent and 

the drug loading amount were investigated. It was found that PLA-PEG-PLA of Mw 

80000 could form microspheres of particle size of around 20 µm, which is suitable for 

chemoembolization, satisfactory encapsulation efficiency and stable colloid dispersion in 

water, while PLA-PEG-PLA of Mw 50000 led to serious aggregation of the microspheres. 

Paclitaxel was found to exist in an amorphous form in the microspheres. The hydrophilic 

segment PEG was distributed both on the surface and in the interior of the PLA-PEG-PLA 

microspheres, resulting in the formation of evenly distributed pores in the microspheres, 

which, in comparison with the PLGA microspheres, led to significantly faster in vitro 

release of the highly hydrophobic drug. Mixing DCM with a water-soluble solvent acetone 

could result in more porous morphology of the microspheres and further enhance the 

paclitaxel release. About 50% sustained release within 1 month was achieved. It was also 

found that higher drug loading amount could result in slower drug release from the 

microspheres, which might be due to the decreased drug diffusion in the polymeric matrix. 
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To conclude, PLA-PEG-PLA microspheres could be a promising controlled delivery 

system for clinical administration of paclitaxel and other anticancer drugs. 
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CHAPTER 4 HSA-LOADED MICROSPHERES 

 

4.1 Introduction 

 

Most of the current drugs, such as penicillin and paclitaxel, were developed by screening a 

large number of synthetic or natural compounds [Perum and Propst, 1989]. Although it 

doesn’t need much information about the molecular mechanism of the diseases, the 

screening approach suffers from inherent problems such as (1) it is time and money 

consuming, (2) there is high possibility of neglecting important compounds, and (3) the 

compounds discovered by this approach frequently don’t have the optimal structure. A 

series of breakthroughs in molecular biology has led to the so-called molecular medicine, 

a new generation of disease treatment [Dill, 1999, FASEB, 1998]. This means that now 

scientists are able to develop drugs at molecular level, with the following knowledge and 

skills: what life is composed of (human genome sequence, structure of proteins and 

DNA/RNA), how lives work (DNA code is transcribed to RNA, which serves as a 

template for protein synthesis. Proteins manipulate a variety of biological functions.), how 

to investigate drug molecules (resolution of molecular structure by X-ray crystallography 

and NMR spectroscopy, structure-activity relationship study), and how to design and 

produce drug molecules (computer-aided molecular design, production of proteins by 

recombinant gene technology, protein engineering and chemical synthesis). The advantage 

of this approach is obvious: it allows us to deal with the underlying causes of diseases, and 

thus, theoretically, the opportunity to obtain drugs with highly specific activity is greatly 

increased. The drugs developed by this approach are often called molecular drugs, which, 
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in the present definition, are mainly macromolecules like proteins/peptides, as it appears 

that nature needs molecules of complicated structure to store the large amount of 

information and regulate the complex biological functions [Buckel, 1996].  

 

Proteins are very large molecules composed of amino acids joined by peptide bonds. The 

vast majority of the proteins found in living organisms are composed of only 20 different 

kinds of amino acids, repeated many times and strung together in a particular order. 

Protein molecules are very complicated, having up to four levels of structure: the sequence 

of amino acids is known as the primary structure (Fig. 4.1); Hydrogen bonds between 

amino acids cause the amino acid chain to assume a helical secondary structure; the chains 

loop and fold back upon themselves, forming the tertiary structure; some proteins, such as 

hemoglobins, are composed of more than one protein subunit, and the spatial 

conformation of these chains is known as the quaternary structure (Fig. 4.2) [Campbell 

and Shawn, 2003].  

 

With more and more therapeutic proteins entering the market, their controlled delivery has 

become a hot topic [Cleland and Langer, 1994]. Initially, however, the feasibility of using 

polymeric microspheres to release large molecules like proteins was doubted, because it 

seemed to be unlikely for drug molecules to permeate through the barrier formed by 

polymer molecules with the same or even smaller molecular weight. Later, it was found 

that the protein molecules, which were water-soluble, could form pores inside the 

microspheres, through which drug release became possible [MIT News Office, 1998]. As 

discussed earlier, to encapsulate water-soluble drugs into polymeric microspheres, the 

double emulsion technique is often used. This process has been applied to produce Lupron 
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Depot®, the first commercialized product of polymeric microsphere formulation of 

proteins [Sanders and Hendren, 1997]. 

 

 

Figure 4.1 Primary structure of proteins [Britannica Encyclopedia On-line] 
 

 

Figure 4.2 Secondary, tertiary and quaternary structure of proteins [Britannica Encyclopedia On-line] 
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In this Chapter, the double emulsion process was utilized to encapsulate a model protein 

HSA, which is fairly cheap, stable, and easy for analysis, into polymeric microspheres. 

Considering the fact that in the last Chapter varying the polymer hydrophobicity has 

shown interesting results for the controlled release of a water-insoluble drug, here we used 

some materials of different hydrophobicity and their effects on HSA-loaded microspheres 

were investigated: (1) PLGA and PLA-PEG-PLA as the polymers. PLGA is routinely used 

and hydrophobic while PLA-PEG-PLA is newer and has a hydrophilic PEG segment 

between the hydrophobic PLA segments. Only the PLA-PEG-PLA with Mw 80000 was 

used here because the one with Mw 50000 exhibited serious aggregation in the resulting 

microspheres as shown in the last Chapter. From the point of view of its molecular 

structure, PLA-PEG-PLA is believed to have many advantages over PLGA such as 

friendliness to protein activity, longer blood circulation half-life, better biocompatibility, 

higher capability for non-invasive drug delivery, reduced amount of emulsifier to be used, 

and less drug readsorption to the microsphere surface [Deng et al., 1990, Deng et al., 1999, 

Tobio et al., 1998]. (2) DCM, ethyl acetate and acetone as the solvents. Their water 

solubility increases in the order of DCM < ethyl acetate << acetone [Smallwood, 1996.]. 

Currently DCM is routinely used but it suffers from the drawback of high toxicity, as 

chlorinated solvents in general are hazardous [Sah et al., 1996]. In contrast, ethyl acetate 

and acetone have much lower toxicity [Smallwood, 1996] and could thus be good 

alternatives. (3) PEG and Vitamin E TPGS as the additives. Hydrophilic PEG is a 

conventional additive to adjust the morphology of the microspheres. Vitamin E TPGS is 

essentially a conjugate between a hydrophilic segment PEG and a hydrophobic segment 

Vitamin E [Yu et al., 1999]. Considering the fact that Vitamin E TPGS has a number of 

clinical applications such as enhancing absorption and increasing the cytotoxicity of 
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anticancer drugs, recently our group has been pursuing to apply it in the preparation of 

controlled drug delivery systems. We previously reported that as an emulsifier Vitamin E 

TPGS could significantly improve the encapsulation efficiency of paclitaxel within 

polymeric nanospheres [Mu and Feng, 2002]. Here, it was mixed with the polymer and we 

expected that it would improve the encapsulation efficiency of proteins and affect the 

other properties of the microspheres. 

 

4.2 Results and discussions 

 

4.2.1 Preparation of microspheres 

 

The double emulsion process is more difficult than the single emulsion process to handle, 

because the w/o/w emulsion is a rather delicate structure. Inappropriate operations could 

lead to broken emulsion, non-spherical spheres, etc. In practice, we used optical 

microscope to monitor the double emulsion process, to ensure that the operations were 

performed appropriately. Typical images captured during the process are shown in Fig. 4.3. 

 

4.2.2 Particle size 

 

The strength of mechanical forces used to obtain the w/o/w emulsion could be applied to 

control the particle size of the polymeric microspheres. As shown in Fig. 4.4, it is obvious 

that stronger emulsification strength resulted in smaller particle sizes. 
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Figure 4.3 Optical microscopy images of well formed (1) w/o emulsion, (2) w/o/w emulsion, (3) solid 

microspheres. PLGA and DCM were used as the polymer and organic solvent respectively. No additive was 
used and the w/o/w emulsion was obtained by mechanical stirring at 800 rpm. 
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Figure 4.4 SEM images of HSA-loaded PLGA microspheres with the w/o/w emulsion obtained at different 

emulsification strengths. DCM was used as the solvent and no additive was used. (1) microspheres of 
diameter (55.3±11.3) µm, formed by mechanical stirring at 800 rpm; (2) microspheres of diameter (24.8±6.8) 

µm, formed by mechanical stirring at 1200 rpm; (3) microspheres of diameter (6.7±1.4) µm, formed by 
homogenizing at 20000 rpm. Note the difference in bar length. 
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The particle size of the polymeric microspheres could also be affected by the materials 

used. As shown in Fig. 4.5, at similar emulsification strengths, the particle size of PLA-

PEG-PLA microspheres was slightly smaller than that of PLGA microspheres. This was 

likely to be due to the fact that liquid droplets containing PLA-PEG-PLA, which is more 

hydrophilic than PLGA, were easier to break in the emulsification process within the 

aqueous environment. 
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Figure 4.5 Effect of polymers on particle size of HSA-loaded microspheres. DCM was used as the solvent 
and no additive was used. 

 

In contrast to polymers, the properties of solvents affect the microsphere properties mainly 

by influencing the removal rate of the solvents. Solid microspheres are formed essentially 

in two steps, i.e. solvent extraction followed by solvent evaporation, in both processes the 
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solvent properties play key roles. The solubility of the solvent in water determines the 

extraction rate, while the evaporation rate depends on its boiling point. Generally, faster 

extraction rate, indicated by higher solubility in water, and faster evaporation rate, 

indicated by lower boiling point, leads to faster solvent removal and faster microsphere 

formation. As a result, it will be more difficult to break the polymer droplets, and larger 

particle size is thus obtained. According to the water solubility and boiling point of the 

solvents, the extraction rate should decrease in the order of acetone >> ethyl acetate > 

DCM, while the evaporation rate of DCM should be the highest. In our experiments, either 

ethyl acetate or acetone was mixed with the conventional solvent DCM at different ratios. 

Fig. 4.6 showed that higher percentage of ethyl acetate or acetone in the solvent mixture 

generally resulted in larger particle sizes, suggesting that solvent extraction rate was 

directly related to the particle size of the microspheres formed. This implies that, under 

our experimental conditions, solvent extraction was predominant in the solvent removal 

process compared with solvent evaporation. 

 

It has been found that the effect of additives (PEG and Vitamin E TPGS) on the particle 

size of microspheres was not significant. Apparently, 2% of the additives resulted in 

slightly larger particle size compared with microspheres formed in the absence of any 

additives, while increasing the additive concentration to 10% led to a small decrease in the 

particle size. It should be pointed out that all these differences in particle size caused by 

additives were less than 7 µm, which was smaller than the standard deviation of the 

measurement (10 µm). 
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Figure 4.6 Effect of organic solvents on particle size of HSA-loaded PLGA microspheres. No additive was 
used and the w/o/w emulsion was obtained by mechanical stirring at 800 rpm. (1) 70% acetone+30% DCM; 

(2) 30% acetone+70% DCM; (3) 10% acetone+90% DCM; (4) 100% DCM; (5) 50% ethyl acetate+50% 
DCM; (6) 80% ethyl acetate+20% DCM; (7) 100% ethyl acetate.  

 

4.2.3 Surface and internal morphology 

 

PLA-PEG-PLA led to coarser surface, compared with PLGA, and the microspheres tended 

to stick together (Fig. 4.7). However, PLA-PEG-PLA (Mw 80000) microspheres were 

well-dispersed after treatment by bath sonication for a few minutes. In addition, more 

porous internal morphology was observed in PLA-PEG-PLA microspheres, and the pores 

were more homogeneous than those of PLGA microspheres (Fig. 4.8). These results were 

similar to those of the single emulsion process (Sec. 3.2.4), except that HSA-loaded PLGA 

microspheres had porous internal structure given by the w/o emulsion while paclitaxel-
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loaded PLGA microspheres didn’t. The different morphology of the PLA-PEG-PLA 

microspheres, compared with that of PLGA ones, can be explained by the presence of 

PEG segment in the copolymer. This hydrophilic segment may cause heterogeneous 

microsphere surface in terms of hydrophobicity, leading to the coarse surface morphology. 

Furthermore, it could help water to enter the interior of the microspheres and thus lead to 

more porous internal structure. The more homogeneous distribution of the pores could be 

due to the more stable w/o emulsion given by PLA-PEG-PLA.  

 

Opposite effects on particle size of HSA-loaded microspheres can be caused by different 

rate of solvent removal. On one hand, fast removal can result in rapid polymer 

precipitation and thus smoother surface and denser inner structure of the microspheres, as 

seen in the results of paclitaxel-loaded microspheres (Sec. 3.2.4). On the other hand, local 

explosion inside the polymer droplets may occur upon rapid solvent removal and lead to 

formation of porous structure and coarse surface [Arshady, 1991]. Consequently, the trend 

of morphology change given by different solvents was rather complicated. Ethyl acetate 

generally resulted in smoother surface and denser internal morphology at all mixing ratios 

with DCM. At 100%, however, ethyl acetate led to distorted microsphere shape, 

presumably due to too rapid solvent extraction. When water-soluble acetone alone was 

used as the solvent, no microsphere could be formed. At other mixing ratios of acetone to 

DCM, either smooth or coarse surface, dense or porous interior could occur. For example, 

70% and 10% acetone led to smoother surface compared with pure DCM, while 30% 

acetone led to more porous surface, suggesting that acetone concentration in the middle 

range might result in porous surface. In terms of internal morphology, DCM mixed with 

10% and 30% acetone resulted in denser interior compared with pure DCM, while 
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increasing the acetone ratio to 70% resulted in more porous inner structure (SEM images 

not shown). 

 

      

Figure 4.7 Surface morphology of HSA-loaded PLGA and PLA-PEG-PLA microspheres. DCM was used as 
the solvent. No additive was used. The w/o/w emulsion was obtained by mechanical stirring at 800 rpm. (1, 

2) PLGA; (3, 4) PLA-PEG-PLA. 
 

  

Figure 4.8 Internal morphology of HSA-loaded (1) PLGA and (2) PLA-PEG-PLA microspheres. DCM was 
used as the solvent. No additive was used. The w/o/w emulsion was obtained by mechanical stirring at 800 
rpm. 
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PEG has been reported to be a pore-forming agent [Sah et al., 1994]. Our results showed 

that 2% PEG was not enough to have this function. In fact, the surface and interior of the 

microspheres with the use of 2% PEG appeared to be even slightly less porous than those 

without the use of additives. Increasing the PEG content to 10% led to remarkable increase 

in pores both on the surface and in the interior of the microspheres (SEM images not 

shown). In contrast, Vitamin E TPGS had different effect on the microsphere morphology. 

A low concentration of 2% led to porous structure, presumably because this amphiphilic 

additive could enhance the interaction of the oil and water phases so that the water could 

enter the microspheres more easily, forming pores inside the microspheres. However, 10% 

Vitamin E TPGS resulted in decreased porosity. This might be because high concentration 

of this additive increased the viscosity of the microsphere interior so remarkably that the 

influx of water phase was retarded (Fig. 4.9). 

  

  
Figure 4.9 Surface and internal morphology of HSA-loaded PLGA microspheres. DCM was used as the 
solvent. 2% (1, 3) or 10% (2, 4) of Vitamin E TPGS was used as the additive. The w/o/w emulsion was 
obtained by mechanical stirring at 800 rpm. 
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4.2.4 Encapsulation efficiency 

 

Shown in Figure 4.10 is the calibration curve of protein concentration vs. absorption (ABS) 

in UV-Vis spectrophotometer analysis, which was used in the measurement of 

encapsulation efficiency and in vitro release of the microspheres. The linear range is from 

1.2 µg/ml to 10 µg/ml. Within this range 7 data points were recorded. The R2 value was 

0.9994.  
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Figure 4.10 Calibration curve of UV-Vis spectrophotometer analysis of HSA 
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Different from the case of the single emulsion process, loss of the encapsulated protein 

during the double emulsion process is practically inevitable because the protein in the 

inner water phase tends to merge with the outer water phase. Thus, the encapsulation 

efficiency of water-soluble agents such as HSA is normally lower than that of water-

insoluble agents such as paclitaxel. The encapsulation efficiency value for the double 

emulsion process can be affected by the following factors: (1) stability of the w/o and 

w/o/w emulsions, (2) the solvent removal rate, (3) the interactions among polymer, drug, 

solvent and additive, and (4) particle size [Freytag et al., 2000, Nihant et al., 1994, Rosa et 

al., 2000], all influenced by the hydrophobicity of the materials used for microsphere 

preparation. Therefore, choice of polymer, solvent and additive with suitable 

hydrophobicity can help to improve the encapsulation of proteins in the microspheres. Our 

results, with HSA as the encapsulated agent, showed that PLA-PEG-PLA microspheres 

possessed higher encapsulation efficiency as compared to their PLGA counterparts (Fig. 

4.11). At similar particle size, the encapsulation efficiency value of HSA in PLA-PEG-

PLA microspheres was about 10% higher than that in PLGA microspheres. This can be 

explained by the fact that PLA-PEG-PLA can improve the w/o emulsion stability. 
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Figure 4.11 Effect of polymers on encapsulation efficiency of HSA in microspheres. DCM was used as the 
solvent and no additive was present. 

 

Similar to the case of particle size and morphology, the effect of organic solvents on 

encapsulation efficiency appeared to be complex. Except certain ratios of acetone or ethyl 

acetate to DCM (70% acetone or 100% ethyl acetate), all the other mixing ratios resulted 

in lower encapsulation efficiency compared with DCM alone. DCM mixed with 70% 

acetone or 100% ethyl acetate resulted in 69.09% and 65.33% of encapsulation efficiency 

value respectively. Both were significantly higher than that achieved by using DCM alone 

(51.1%). Pean et al. also reported the observation that there was an optimized mixing ratio 

of DCM and acetone to yield high encapsulation efficiency [Pean et al., 1998]. 
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We expected a distinctly different effect of PEG and Vitamin E TPGS on encapsulation 

efficiency, i.e. Vitamin E TPGS would improve encapsulation efficiency, based on the 

hypothesis that, as a surfactant, Vitamin E TPGS could improve the w/o emulsion stability 

while PEG could not. In addition, our group previously reported that Vitamin E TPGS 

helped to achieve 100% encapsulation efficiency of paclitaxel in the single emulsion 

process [Mu and Feng, 2002]. However, our experimental data showed that both PEG and 

Vitamin E TPGS had negative effect on encapsulation efficiency when w/o/w emulsion 

solvent extraction/evaporation process was used to microencapsulate the hydrophilic 

compound HSA. The encapsulation efficiency values of using either low (2%) or high 

concentrations (10%) of these two additives were around 25% lower than that obtained 

without the use of additives. Rosa et al. also observed that coencapsulation of surfactants 

reduced encapsulation efficiency of insulin in PLGA microspheres. They attributed the 

result to displacement of the drug molecules from w/o emulsion interface by the 

surfactants, eventually decreasing the amount of drug located within the w/o emulsion 

[Rosa et al., 2000]. 

 

 

 

4.2.5 In vitro release 

 

As expected, the release rate of water-soluble HSA (Fig. 4.12 and Fig. 4.13) was 

remarkably faster than that of water-insoluble paclitaxel (Fig. 3.7) from polymeric 

microspheres. Similar to the case of the single emulsion process, compared with PLGA, 

the polymer PLA-PEG-PLA led to faster HSA release at the two particle sizes tested (Fig. 
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4.12), probably due to its more porous matrix, faster drug diffusion and polymer 

degradation caused by higher hydrophilicity. More than 90% of the encapsulated HSA was 

released from PLA-PEG-PLA microspheres within 13 days. This is an interesting 

phenomenon in the sense that this polymer, as compared with PLGA, exhibited ability to 

increase both the encapsulation efficiency value and the release rate (Fig. 4.11 and 4.12, 

respectively). In general, it is well-known that higher release rate is related to lower 

encapsulation efficiency value.  

 

Since the effects of organic solvents on many microsphere properties such as particle size, 

morphology and encapsulation efficiency were complex and the in vitro HSA release was 

actually affected by these properties, the effect of solvents on the in vitro HSA release was 

found to be even more complicated. No clear-cut trend of release rate could be observed as 

the co-solvent ratio was altered (data not shown). We thus suggested that it might not be 

wise to control the HSA release rate by varying the solvent mixing ratio, although some 

other microsphere properties, such as biocompatibility, particle size, morphology and 

encapsulation efficiency, could be improved or adjusted by appropriately selecting the 

mixing ratio of the solvents, as discussed earlier. 
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Figure 4.12 Effect of polymers on in vitro release of HSA from microspheres. DCM was used as the solvent 
and no additive was used. (1) PLGA mechanical stirring 1200 rpm, particle size 24.8 µm; (2) PLGA 

homogenizing 20000 rpm, particle size 6.7 µm; (3) PLA-PEG-PLA mechanical stirring 1200 rpm, particle 
size 20.5 µm; (4) PLA-PEG-PLA homogenizing 20000 rpm, particle size 5.5 µm. 

 

The effect of additives on HSA release corresponded well to the morphology of polymeric 

microspheres (Fig. 4.12). A low concentration of 2% PEG resulted in denser morphology 

(both surface and internal) and slightly slower release rate, probably because of the slower 

drug diffusion rate. Higher PEG concentration (10%) resulted in more porous structure 

and slightly faster HSA release. Compared with PEG, the effect of Vitamin E TPGS was 

more significant. Remarkably faster HSA release (and also more porous morphology) was 

caused by low Vitamin E TPGS concentration at 2%, while 10% of Vitamin E TPGS 

significantly reduced the release of HSA and also resulted in denser morphology of the 

microspheres.  
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Figure 4.13 Effect of additives on in vitro release of HSA from PLGA microspheres. DCM was used as the 
solvent and the w/o/w emulsion was obtained by mechanical stirring at 800 rpm. (1) 2% Vitamin E TPGS, (2) 

10% Vitamin E TPGS, (3) 2% PEG, (4) 10% PEG, (5) no additive. 
 

4.3 Summary 

 

In this Chapter, HSA-loaded polymeric microspheres were prepared by the double 

emulsion process. The effects of materials with different hydrophobicity from their 

conventional counterparts, such as PLA-PEG-PLA as the polymer, ethyl acetate/acetone 

as the (co)solvent and Vitamin E TPGS as the additive, on the physical properties of HSA-

loaded microspheres were investigated. It has been found that these materials resulted in 

significantly distinct characteristics of the microspheres. PLA-PEG-PLA and lower 
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percentage of ethyl acetate/acetone led to smaller particle size. PLA-PEG-PLA, high 

concentration of PEG and low concentration of Vitamin E TPGS led to more porous 

morphology while ethyl acetate and high concentration of Vitamin E TPGS led to denser 

microspheres. PLA-PEG-PLA and certain percentage of ethyl acetate/acetone led to higher 

encapsulation efficiency. PLA-PEG-PLA, high concentration of PEG and low 

concentration of Vitamin E TPGS led to faster in vitro HSA release. The materials that we 

applied could render the protein-loaded polymeric microspheres with interesting 

applications. Furthermore, the information obtained in the present and the previous 

Chapters about the solvent extraction/evaporation technique would be useful for 

encapsulating other drug delivery devices, such as liposomes, into polymeric microspheres, 

which is the topic of the next Chapter. 
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CHAPTER 5 LIPOSOMES-IN-MICROSPHERE 

 

5.1 Introduction 

 

As mentioned earlier, in most, if not all, of the controlled drug delivery systems, the drug 

is incorporated in or attached to either polymers or lipids. Thus, these systems can be 

categorized into two groups, namely the polymer-based and the lipid-based systems 

[Langer, 1998]. Probably because polymer molecules are normally much larger than those 

of lipids, the former usually form solid phase, such as polymeric microspheres or 

nanoparticles, films, pellets, etc., while the latter form liquid or liquid crystalline phase, 

such as liposomes [Harrington, 2001], micelles [Mahato et al., 1997], emulsions [Benita 

and Levy, 1993] and microemulsions [Bagwe et al., 2001], etc., for controlled drug 

delivery. One can find many common points between the polymer-based and lipid-based 

systems with regard to preparations, characterizations and applications. On the other hand, 

they have many differences. For example, the lipid-based systems often suffer from the 

problem of instability while the polymer-based systems are normally rather stable; the 

lipid-based systems are normally more biocompatible than the polymer-based ones as 

lipids are part of the cell membranes. We propose that an appropriate combination of the 

polymer-based and the lipid-based systems could integrate their advantages, avoid their 

disadvantages, and lead to new applications. Some systems in the literature may be 

considered as the consequence of this concept. For example, in stealth liposomes, which 

have been most successful for delivery of an anticancer agent doxorubicin, a polymer is 

coated on the surface of liposomes to improve their stability [Lasic and Martin, 1995]. 
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Also, Feng and Hung utilized phospholipids, instead of the conventional PVA, as the 

emulsifier in the preparation of polymeric nanoparticles for clinical administration of 

anticancer drugs. The lipids were found to be coated on the nanoparticles to improve the 

biocompatibility [Feng and Hung, 2001]. In this Chapter, we fabricated and characterized 

a novel drug delivery device, i.e. liposomes-in-microsphere (LIM) of biodegradable 

polymers, based on the concept of combining the polymer-based and lipid-based systems. 

In this novel system, drugs are firstly loaded into liposomes, which are then encapsulated 

into polymeric microspheres. Currently polymeric microspheres and liposomes are 

probably the most successful polymer-based and lipid-based systems respectively [Langer, 

1998]. Polymeric microspheres have been reviewed in Sec. 1.2 and the following is a brief 

introduction to liposomes. 

 

Each phospholipid molecule contains one hydrophilic headgroup and two hydrophobic 

chains. After dispersed in the aqueous environment, phospholipids tend to adopt the 

structure of liposomes, or phospholipid vesicles, in which the hydrophilic headgroups are 

positioned outward to the water phase and the hydrophobic chains inward tail to tail, in 

order to minimize the contact of the hydrophobic parts of the phospholipids with water. 

The vesicles may consist of one or several concentric membranes with their size ranging 

from 20 nm to several dozen µm. The thickness of each membrane bilayer is 

approximately 4 nm. Liposomes exist in a unique physical state, i.e. liquid crystalline state, 

in which the matter exhibits simultaneously some properties of liquid state, such as low 

viscosity, and some properties of crystalline state, such as anisotropy of mechanical, 

optical, electrical and magnetic properties. Both hydrophilic and hydrophobic drugs can be 
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loaded to the liposomes: the former is entrapped in the aqueous core while the latter is 

dissolved in the lipid bilayers (Fig. 5.1) [Lasic, 1993]. 

 

 
 Figure 5.1 Structure of phospholipids and liposomes [Britannica Encyclopedia On-line] 

 

Film hydration followed by extrusion/sonication is often used to prepare liposomes. At 

first, a thin lipid film is formed by drying a lipid solution, which may contain hydrophobic 

drugs, on a glass surface. The film is then hydrated with an aqueous solution, which may 

contain hydrophilic drugs. A gentle mechanical treatment (e.g. vortex mixing) is then 

conducted to form multilamellar vesicles (MLVs). To reduce the particle size and lamellar 

number of the liposomes, membrane extrusion or sonication can follow to obtain large 

unilamellar vesicles (LUVs) or small unilamellar vesicles (SUVs), respectively [New, 

1990]. The preparation of liposomes represents a different strategy to produce micro/nano-

size devices from the solvent extraction/evaporation technique for polymer systems. The 

former may be called the ‘down-to-up’ strategy in that the micro/nano-size is formed by 

self-assembling individual molecules, while the latter may be called the ‘up-to-down’ 
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strategy in that the micro/nano-size is obtained by breaking macro-systems. In general, the 

‘down-to-up’ strategy results in smaller size of the devices formed. 

 

Drugs are released from the liposomes mainly by diffusion. Diffusivity is different for 

different liposome contents. Some general rules are (1) The diffusivity of macromolecules 

is smaller than that of small molecules; (2) the diffusivity of ions is larger than that of 

neutral molecules; (3) the diffusivity of anions is larger than that of cations. The behavior 

of the lipid bilayers also significantly affects the drug release kinetics. For example, Long-

chain and unsaturated phospholipids and high cholesterol content result in rigid and tightly 

packed membrane, and thus low drug release rate [Packer and Fleischer, 1997]. Drug 

targeting can be achieved by liposomes via similar mechanisms as those for polymeric 

microspheres. One exception is chemoembolization, which cannot be done by liposomes 

due to their limit in particle size. In addition, some special external parameters, such as pH 

and temperature, have been used to realize liposome-mediated drug targeting. For example, 

in temperature-sensitive liposomes, the phase transition temperature of the lipid bilayers 

(Tc) is adjusted to that of a certain site in human body. As such, the drug will be mainly 

released at the desired site because dramatically more defects form in the lipid membrane 

during the phase transition [Barenholz, 2001, Crommelin et al., 1997]. 

 

One can think of many potential advantages/applications for the novel drug delivery 

system LIMs, which is formed by encapsulating liposomes into polymeric microspheres. 

Some of them are outlined below. 
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(1) In LIMs, the microspheres could form a matrix to protect the liposomes while the 

biocompatibility of the polymer matrix could be improved by the existence of part 

of the lipids on the surface. 

(2) LIMs could improve the drug loading and encapsulation efficiency, compared with 

liposomes or microspheres alone, due to the fact that both the lipid layers and the 

polymer matrix would block the drug leakage. 

(3) More flexible drug release kinetics could be achieved by LIMs compared with that 

by microspheres or liposomes alone, meaning that LIMs could be made to meet 

various requirements for the release profile. For instance, the release of extremely 

water-soluble drugs such as etanidazole from microspheres is too fast for clinical 

applications [Wang and Wang, 2002]. By encapsulating these drugs into the LIM 

system, both the lipid membranes and the polymer matrix would retard the drug 

release, thereby making sustained release possible. 

(4) LIMs could be applied for tumor-targeted gene delivery, if gene-loaded liposomes 

are encapsulated inside the microspheres of 20~50µm in size. This application 

combines the tumor-targeted capability of microspheres and the capability of 

liposomes to transfer genes into cells. After LIMs are delivered intra-arterially to 

the upstream of a tumor, they would be entrapped in the tumor vasculature due to 

the chemoembolization effect, since 20~50 µm is a suitable size for this effect to 

occur, as discussed earlier. The liposomes carrying therapeutic genes would then 

be released from the polymer matrix and enter the tumor cells. 

(5) One of the biggest problems in controlled delivery of therapeutic proteins/peptides 

using polymeric microspheres is denaturation of the drugs during the fabrication 

and storage processes of the delivery system, and after they are delivered into 
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human body [Fu et al., 2000]. In LIM system, the lipid bilayers of the liposomes 

could protect the loaded drug from the harsh conditions involved in the subsequent 

microsphere fabrication process. Furthermore, the acidic microenvironment 

frequently existing inside the microspheres is believed to be harmful to the stability 

of many proteins/peptides. After incorporated into liposomes, however, these drugs 

could be protected by the lipid bilayers. Compared with the strategy of using 

certain chemicals co-encapsulated with the proteins/peptides to protect their 

activity, which are often termed as ‘additives’ or ‘stabilizers’ [Cleland and Jones, 

1996], our approach could be advantageous because a physical rather than 

chemical protection would be obtained. Potentially, the physical protection could 

work for all drugs. 

 

The key issue to fabricate the LIM system is how to encapsulate liposomes into 

microspheres, since loading drugs, either water-soluble or water-insoluble, to liposomes 

has become routine operations [New, 1990]. Because liposomes normally exist in a water 

phase, we intended to make use of the double emulsion process, which is commonly used 

for microencapsulation of water-soluble agents, to achieve this goal. In order to apply the 

double emulsion process to fabricate LIMs, we could simply treat the liposomes as the 

water-soluble agents. However, two problems had to be solved first: the two harsh 

conditions involved in the double emulsion process, namely (1) sonication for the 

production of the w/o emulsion and (2) the organic solvents used are harmful for the 

integrity of liposomes. These two problems were solved in Sec. 5.2 and 5.3 respectively 

by the following strategies: (1) the conventional double emulsion process was modified to 

avoid the sonication treatment, and (2) the liposomes were coated with a hydrophilic 
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polymer to protect them from organic solvents. Subsequently, in Sec. 5.4 the novel device 

LIMs was successfully fabricated and characterized. 

 

5.2 Modification of double emulsion process 

 

In the first step of the double emulsion process, the w/o emulsion is routinely produced by 

a highly energetic emulsification method, namely sonication, because forming a stable w/o 

emulsion is crucial for good encapsulation effects. Unstable w/o emulsion leads to 

substantial loss of the encapsulated agents during the microencapsulation process, 

resulting in low encapsulation efficiency. Another consequence of unstable w/o emulsion 

is the existence of a large portion of the encapsulated agents on or near the microsphere 

surface, leading to high initial burst in the release kinetics [Igartua et al., 1997, Sah et al., 

1995]. Despite being critical to obtain stable w/o emulsion and satisfactory encapsulation 

effects, the highly energetic emulsification methods such as sonication were identified to 

be one of the major culprits of destroying the encapsulated agents. Sonication can degrade 

the encapsulated agents through large pressure and temperature gradients, high shear 

forces, or by generating free radicals. In addition, sonication exposes the encapsulated 

agents to the degrading action of organic solvent across a very large interfacial area 

[Capan et al., 1999, Krishnamurthy et al., 2000, Mclean and Mortimer, 1988, Misik et al., 

1995]. Moreover, it was reported that sonication could also result in degradation of the 

polymer matrix [Reich, 1998]. Some countermeasures that can prevent the degradation of 

encapsulated agents have been developed, most of which involve using additives (often 

called ‘stabilizers’) such as dimethyl sulfoxide [Krishnamurthy et al., 2000], sucrose 

[Sturesson and Carlfors, 2000], and zinc acetate [Lam et al., 2001]. However, an inherent 
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disadvantage associated with this strategy is that particular stabilizers can work only for 

particular encapsulated agents. Also, the effectiveness of this strategy for liposomes is 

questionable, since previously the encapsulated agents have only included individual 

molecules such as proteins. To solve the problem caused by sonication, we used an 

alternative approach, i.e. using mild emulsification procedures such as vortex mixing to 

replace sonication, with the introduction of certain materials that can help to obtain stable 

w/o emulsion, which is critical for high encapsulation efficiency and low initial burst.  

 

The following materials were applied to improve the w/o emulsion stability: (1) A 

partially hydrophilic polymer PLA-PEG-PLA, which is more hydrophilic than the 

conventional polymer PLGA, due to the presence of a hydrophilic PEG segment in its 

molecular structure. Only the PLA-PEG-PLA with Mw 80000 was used here because the 

one with Mw 50000 exhibited serious aggregation in the resulted microspheres as 

discussed in Chapter 3. (2) More hydrophilic organic solvents. Ethyl acetate or acetone 

was mixed with the conventional solvent DCM. Ethyl acetate and acetone have higher 

water solubility than DCM, and their density gap with water is smaller. Another advantage 

of these two alternative solvents is their low toxicity. (3) Emulsifiers in the w/o emulsion. 

Conventionally the w/o emulsion is formed in the absence of emulsifier, probably because 

highly energetic mechanical treatments such as sonication are considered to be sufficient 

to form stable w/o emulsion without using any emulsifier. Two emulsifiers were applied 

here, i.e. PVA, which is water-soluble, and Vitamin E TPGS, which is both water and oil 

soluble [Mu et al., 2001]. We were to assess the feasibility of our strategy by investigating 

the effects of these materials on encapsulation of HSA under mild emulsification 

conditions. The reason why we did not directly use liposomes as the encapsulated agent is 
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that at this stage the problem of preventing the liposomes from the damage caused by 

organic solvents had not been solved yet. In contrast to liposomes, HSA is a rather stable 

compound. Moreover, the protein assay method that we would use, i.e. the Bradford 

method, does not distinguish between denatured and intact proteins. Therefore, if we could 

show that under the mild emulsification treatment the encapsulation effect of HSA into 

polymeric microspheres was acceptable with the aid of the above mentioned materials, the 

‘modified double emulsion process’ should be considered to be feasible. We would further 

examine the effect of this process on liposomes in Sec. 5.4, after the problem of organic 

solvent was solved. 

 

Nine batches of microsphere samples were prepared and compared in terms of internal 

morphology, encapsulation efficiency, initial burst and other properties. As shown in 

Table 5.1, SA1 and SA2 were controls prepared by sonication and vortex mixing 

respectively. In other words, sonication and vortex mixing were used in these two samples 

respectively to form w/o emulsion, and in both of them all materials used were 

conventional, i.e. PLGA as the polymer, DCM as the solvent, no emulsifier used in the 

w/o emulsion formation. In each of the samples SA3 to SA9, vortex mixing was used and 

one new material was applied to replace the corresponding conventional counterpart: 

polymer PLA-PEG-PLA was used in SA3 to replace PLGA; Solvent mixtures of DCM 

and ethyl acetate or acetone having different mixing ratios were used in SA4 to SA7 to 

replace DCM; Emulsifiers PVA and Vitamin E TPGS were used in w/o emulsion in SA8 

and SA9.  
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Table 5.1 Samples of HSA-loaded microspheres 
 

Sample 

number 

Sample 

 name 

Method to form 

w/o emulsion 

Polymer Solvent Emulsifier in w/o 

emulsion 

SA1  Sonication control Sonication PLGA DCM No 

SA2  Vortex control Vortexing PLGA DCM No 

SA3 PLA-PEG-PLA Vortexing PLA-PEG-PLA DCM No 

SA4  30% ethyl acetate Vortexing PLGA DCM:ethyl 

acetate=70:30 

No 

SA5  70% ethyl acetate  Vortexing PLGA DCM:ethyl 

acetate=30:70 

No 

SA6  30% acetone Vortexing PLGA DCM:acetone

=70:30 

No 

SA7  70% acetone Vortexing PLGA DCM:acetone

=30:70 

No 

SA8 PVA Vortexing  PLGA DCM PVA 

SA9 Vitamin E TPGS Vortexing PLGA DCM Vitamin E TPGS 

 

Homogeneous internal morphology of microspheres is indicative of stable w/o emulsion in 

the double emulsion process, because the appearance of the w/o emulsion is shown in the 

internal morphology of the microspheres after the removal of organic solvents. Fig. 5.2 

shows the internal morphology of the microsphere samples. By comparing the images of 

samples SA1 and SA2 it can be seen that, as expected, vortex mixing in the absence of the 

newer materials resulted in heterogeneous internal structure, indicating the formation of 

unstable w/o emulsion (sample SA2). As a result, the encapsulation efficiency of the 
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vortex control sample (sample SA2) was very low (23.4%, Fig. 5.3) and its initial burst 

was very high (89.9%, Fig. 5.4). 

 

  

  

Figure 5.2 Internal morphology of HSA-loaded microspheres. SA1: sonication control; SA2: vortex control; 
SA3: PLA-PEG-PLA; SA6: 30% acetone. 

 

All the new materials that we tested exhibited positive effects, more or less, on improving 

w/o emulsion stability, as the internal structure of all samples became significantly more 

homogeneous than that of the vortex control sample SA2. Shown in Fig. 5.2 are some 

typical images. Substantial increase of encapsulation efficiency and decrease of initial 

burst in these samples were observed consequently (Fig. 5.3 and 5.4). In fact, many of 

them had better or comparable results than the sonication control sample SA1. Thus, we 

would adopt the modified double emulsion process to encapsulate liposomes into 

polymeric microspheres, and examine the encapsulation effects for liposomes in Sec. 5.4. 

SA1 SA2 

SA3 SA6 
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  Figure 5.3 Encapsulation efficiency of HSA-loaded microspheres. SA1: sonication control; SA2: vortex 
control; SA3: PLA-PEG-PLA; SA4: 30% ethyl acetate; SA5: 70% ethyl acetate; SA6: 30% acetone; SA7: 

70% acetone; SA8: PVA; SA9: Vitamin E TPGS. 
 

0

10

20

30

40

50

60

70

80

90

100

SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9

In
iti

al
 b

ur
st

 (%
)

 

Figure 5.4 Initial burst of HSA-loaded microspheres. SA1: sonication control; SA2: vortex control; SA3: 
PLA-PEG-PLA; SA4: 30% ethyl acetate; SA5: 70% ethyl acetate; SA6: 30% acetone; SA7: 70% acetone; 

SA8: PVA; SA9: Vitamin E TPGS. 
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The effects of these materials can be explained as following. A more hydrophilic polymer 

like PLA-PEG-PLA was helpful for the interaction between water and oil phases [Li et al., 

1999]. The improvement caused by ethyl acetate and acetone was probably due to the fact 

that (1) as compared with DCM, they were more water-soluble and their density difference 

with water was smaller, thereby leading to better mixing between water and oil phases; (2) 

their extraction rate was greater, thus the polymer precipitated more rapidly and HSA had 

less opportunity to diffuse out [Bodmeier and McGinity, 1988]. These explanations were 

further supported by the observation that higher ratio of ethyl acetate/acetone resulted in 

higher encapsulation efficiency and lower initial burst (Fig. 5.3 and 5.4: SA4-7). 

Emulsifiers were able to improve the w/o emulsion stability because their amphiphilic 

structure facilitated the oil-water interaction [Conway and Alpar, 1996]. Under our 

experimental conditions, the effects of PVA appeared to be slightly better than Vitamin E 

TPGS (Fig. 5.3 and 5.4: SA8 and 9). 

 

We noticed that some of the above results seemed to be ‘contradictory’ to some of those in 

the previous Chapter. For example, in the previous Chapter the effect of organic solvents 

on HSA encapsulation efficiency was complex, while here all the mixtures of DCM with 

ethyl acetate or acetone resulted in better encapsulation effects than DCM alone. This 

‘contradiction’ is actually understandable, because here vortex mixing rather than 

sonication was used to form the w/o emulsion and maintenance of the w/o emulsion 

stability was thus the key to obtain good encapsulation effects, and any means to improve 

the w/o emulsion stability, such as more hydrophilic solvents, could lead to better 

encapsulation effects. 
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Characterizations were also carried out on other microsphere properties such as surface 

morphology, particle size and kinetics of in vitro release. It was found that all samples had 

nice spherical shape and most had smooth surface morphology. Several typical SEM 

images are shown in Fig. 5.5. PLA-PEG-PLA resulted in coarse microsphere surface, a 

result in agreement with those of previous Chapters (samples SA3).  

 

  

  

Figure 5.5 Surface morphology of HSA-loaded microspheres. SA1: sonication control; SA2: vortexing 
control; SA3: PLA-PEG-PLA; SA9: Vitamin E TPGS. 

 

As shown in Fig. 5.6, vortex mixing led to slightly smaller particle size (SA1 vs. SA2), 

probably due to partial loss of the inner water phase (Figure 5.2). The particle size of all 

the other samples appeared to be larger than that of vortex control sample SA2, 

presumably due to the improvement of w/o emulsion stability and thus less loss of inner 

water phase. Higher ratio of ethyl acetate/acetone as the cosolvent led to larger size. The 

SA1 SA2 

SA9 SA3 
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reason may be that these two solvents were extracted to the outer water phase more rapidly 

than DCM, thus the polymer droplets were harder to be broken if the solvent mixture 

contained more ethyl acetate/acetone. 
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Figure 5.6 Particle size of HSA-loaded microspheres. SA1: sonication control; SA2: vortex control; SA3: 
PLA-PEG-PLA; SA4: 30% ethyl acetate; SA5: 70% ethyl acetate; SA6: 30% acetone; SA7: 70% acetone; 

SA8: PVA; SA9: Vitamin E TPGS. 
 

All samples tested had sustained release pattern for the encapsulated protein after the 

initial burst (Fig. 5.7). The release rate given by samples prepared by vortex mixing was 

generally greater than that of the control sample prepared by sonication, perhaps partially 

due to the more porous internal morphology observed in the former. The partially 

hydrophilic matrix of PLA-PEG-PLA microspheres led to fast HSA diffusion and polymer 
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degradation, thus the release rate was very fast (samples SA3). HSA release from samples 

prepared with higher ratio of more hydrophilic cosolvent (ethyl acetate or acetone) was 

slower, probably due to their larger particle size. 
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 Figure 5.7 In vitro release of HSA from microspheres. SA1: sonication control; SA2: vortex control; SA3: 
PLA-PEG-PLA; SA4: 30% ethyl acetate; SA5: 70% ethyl acetate; SA6: 30% acetone; SA7: 70% acetone; 

SA8: PVA; SA9: Vitamin E TPGS. 
 

5.3 Coating of liposomes 

 

In the lipid bilayers of liposomes, hydrophilic head groups of the phospholipid molecules 

are positioned outward to the water phase and the hydrophobic chains inward tail to tail. 

Since phospholipids are soluble in organic solvents, liposomes could readily be damaged 
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by the organic solvent used for LIM preparation, although the hydrophilic head groups 

could have some protective effect. There have been some successful attempts in the 

literature to protect the liposomes from organic solvents by cross linking the phospholipid 

molecules in the lipid bilayers [Gregoriadis, 1984a]. However, the polymerization of 

phospholipids involves complex operations, e.g., UV radiation. Here we used a 

hydrophilic polymer coating technique, which is much simpler in operation, to achieve the 

same goal. To the best of our knowledge, no similar report can be found from the literature 

for this purpose, although there are numerous reports on the effect of coating to preserve 

the liposome stability against reticuloendothelia system (RES) [Lasic and Martin, 1995]. 

 

It could be anticipated that the protective effect of hydrophilic polymer coating would 

depend on (1) solubility of the polymer in the organic solvent, (2) the adhesive ability of 

the polymer on the lipid bilayers, (3) the ability of the organic solvent to penetrate the lipid 

layers, and (4) the ability of the organic solvent to dissolve the phospholipids. We tested 

the effect of three polymer materials, which have been reported in the literature as 

liposome coating, namely PEG, chitosan and PVA, and five organic solvents, which have 

been used in the literature for preparation of polymeric microspheres, namely chloroform, 

DCM, acetone, ethyl acetate and cyclohexane. 

 

Fig. 5.8 shows the effects of different coating materials on the change of liposome 

properties, including vesicle number (Fig. 5.8 (A)) and amount of calcein inside the 

liposomes (Fig. 5.8 (B)), after the treatment with different organic solvents. In the absence 

of organic solvents, vortex mixing slightly reduced the vesicle number and the amount of 

calcein inside the liposomes (No. 2). In the presence of organic solvents, however, the 
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change of the above two properties became very dramatic, indicating significant liposome 

breakage. The change of liposome properties depended on the choice of coating materials 

and organic solvents. It can be seen from Fig. 5.8 that the damaging effect of different 

organic solvents increased in the order of cyclohexane < ethyl acetate << DCM < the 

mixture of DCM and acetone ≈ chloroform, in terms of either the vesicle number or the 

calcein maintenance. The observation that acetone had great damaging effect might be 

explained by its readiness to get across the barrier formed by hydrophilic head groups in 

the lipid bilayers, since it is water-soluble. Chloroform damaged the liposomes easily 

because phospholipids readily dissolve in chloroform. In fact, chloroform is the most 

commonly used solvent for phospholipids. Furthermore, among the three coating materials 

that we used, chitosan appeared to have the best effect to protect liposomes from damage 

by the organic solvents. In particular, when cyclohexane or ethyl acetate was used as the 

organic solvent and chitosan as the coating material, the integrity of the liposomes was 

mostly preserved after the treatment with the organic solvent.  

 

Chitosan is the principal derivative of chitin, one of the most abundant polysaccharides in 

nature. It has been applied for many biomedical applications. Main industrial sources of 

chitin are the shell wastes of shrimp, lobster and crab. Alkaline deacetylation of chitin 

forms chitosan [Felt et al., 1998]. The excellent protective effect of chitosan in our case 

could be due to its two characteristics: (1) Chitosan is practically insoluble in all common 

organic solvents [Kumar, 2000]. In contrast, PEG is soluble in a number of organic 

solvents. (2) It is one of the few natural polymers that bear cationic charges. The cationic 

nature enables it to establish a strong attractive force with the negative charged lipid 

bilayers [Takeuchi et al., 1996]. Therefore, the chitosan coating is difficult to be removed 
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from the liposome surface. In contrast, PVA is easy to detach from the liposomes because 

the force to maintain the attachment is purely by adsorption.  
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(A) The change of vesicle number after the treatment of organic solvents 
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(B) The maintenance of calcein in the liposomes after the treatment of organic solvents 

 

Figure 5.8 Change of liposome properties after the treatment of organic solvents: effect of different coating 
materials and organic solvents. The liposomes used were LUVs with lipid composition 

DOPC:DPPG:cholesterol=7:2:1 and total lipid concentration 2 mM, and produced by membranes of pore 
size 200 nm. No.1 (control 1): no solvent treatment, no vortex mixing; No. 2 (control 2): no solvent 

treatment, treated with vortex mixing; No. 3: treated with chloroform and vortex mixing; No. 4: treated with 
DCM and vortex mixing; No. 5: treated with the mixture of DCM (90%) and acetone (10%) and vortex 
mixing; No. 6: treated with ethyl acetate and vortex mixing; No. 7: treated with cyclohexane and vortex 

mixing. 
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As shown in Fig. 5.9, the presence and amount of negative charge played a critical role in 

the protective effect of chitosan coating. In the absence of DPPG, a negative charged 

phospholipid, the protective effect of chitosan was marginal, presumably because only 

adsorption force was involved in attaching the coating to the liposome surface in this case. 

Addition of 10% DPPG in the lipid composition led to significant improvement of the 

protective effect, probably due to the presence of the electrical attractive force between the 

cationic coating and the anionic phospholipid. Further increase of the DPPG amount led to 

further improvement of the stability of the liposomes. Nevertheless, compared with 20% 

DPPG, the improvement given by 30% DPPG was trivial, implying that 20% DPPG 

allowed nearly complete attraction of the positive charges in the chitosan coating. 

 

The effects of chitosan coating on the properties of liposomes, including surface charge, 

particle size and in vitro release rate of calcein, were investigated. As shown in Fig. 5.10 

(A), coating the negative-charged surface of liposomes with the cationic polymer chitosan 

shifted the zeta potential, which is an indicator of surface charge, from negative value to 

positive value. This is why chitosan-coated liposomes have been used as mucoadhesive 

drug delivery systems as their positively charged surface can help them adhere to the cells, 

whose membranes are usually negatively charged [Takeuchi et al., 2001]. Fig. 5.10 (B) 

shows the results of particle size. It can be seen that chitosan coating slightly increased the 

particle size of liposomes. In vitro release of calcein from liposomes was carried out at 

25○C without shaking. As we can see from Fig. 5.10 (C), the chitosan on the liposome 

surface slightly reduced the calcein release rate. 
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(A) The change of vesicle number after the treatment of organic solvents 
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(B) The maintenance of calcein in the liposomes after the treatment of organic solvents 

 
Figure 5.9 Change of the properties of chitosan coated liposomes after the treatment of organic solvents: 
effect of lipid charge. The liposomes used were LUVs with total lipid concentration 2 mM, produced by 

membranes of pore size 200 nm, and coated with 1% chitosan.  No.1 (control 1): no solvent treatment, no 
vortex mixing; No. 2 (control 2): no solvent treatment, treated with vortex mixing; No. 3: treated with 

chloroform and vortex mixing; No. 4: treated with DCM and vortex mixing; No. 5: treated with the mixture 
of DCM (90%) and acetone (10%) and vortex mixing; No. 6: treated with ethyl acetate and vortex mixing; 

No. 7: treated with cyclohexane and vortex mixing. 
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(A) Surface charge of liposomes 
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(B) Particle size of liposomes 
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(C) Calcein release from liposomes 

 
Figure 5.10 Effects of chitosan coating on the properties of liposomes. The liposomes used were LUVs with 

lipid composition DOPC:DPPG:cholesterol=7:2:1 and total lipid concentration 2 mM, and produced by 
membranes of pore size 200 nm. 
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5.4 Fabrication and characterizations of LIMs 

 

5.4.1 Fabrication 

 

After the problems of possible damage to the liposomes by sonication and organic solvents 

were solved by modifying the double emulsion process and the liposome structure 

respectively, we should be able to encapsulate liposomes into the polymeric microspheres. 

The key points in the preparation of LIMs can be summarized as the following: (1) the 

modified double emulsion method was implemented, in which vortex mixing was used to 

produce the w/o emulsion. (2) PLA-PEG-PLA (Mw 80000) and ethyl acetate were used as 

the polymer and the organic solvent, respectively. (3) Negative charged liposomes were 

coated with chitosan. It should be pointed out that emulsifiers were not used in the 

formation of w/o emulsion for the LIM preparation because they might have damaging 

effects on liposomes [S.C Basu and M. Basu, 2002]. In addition, cyclohexane, one of the 

solvents that showed good effect for liposome protection as discussed in the previous 

Section, was not used in the preparation of LIMs because we found that PLA-PEG-PLA 

does not dissolve readily in it. Six LIM samples (Table 5.2, LIM1 – LIM6), which had 

different particle size of liposomes and porosity of polymer matrix, were prepared.  A 

blank microsphere sample was also prepared for comparison. The integrity of liposomes 

after being encapsulated and released from the microspheres was examined. The particle 

size, morphology and encapsulation efficiency of the LIMs were characterized. The 

feasibility of controlling the in vitro release kinetics of LIMs by the properties of 

liposomes and polymer matrix was then demonstrated. 
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Table 5.2 Samples of LIMs. Liposomes were LUVs or MLVs with lipid composition 
DOPC:DPPG:cholesterol=5:2:5 and total lipid concentration of 2 mM, and coated with 1% chitosan. PEG 

was used as a pore forming additive in the polymer matrix. It was mixed with the polymer before the 
preparation of LIMs. 

 
Sample 

number 

Liposome size 

(nm) 

PEG concentration 

(%) 

LIM size 

(µm) 

Released liposome 

size (nm) 

LIM encapsulation 

efficiency (%) 

LIM1 185.5 (LUVs) 0 66.5±12.2 192.3 50.3 

LIM2 255.8 (LUVs) 0 60.8±13.6 240.1 52.5 

LIM3 438.2 (LUVs)  0 67.9±11.5 411.8 53.1 

LIM4 1382.2 (MLVs) 0 62.8±13.3 1278.5 56.5 

LIM5 185.5 (LUVs)  5 63.1±13.2 171.2 48.2 

LIM6 185.5 (LUVs)  10 69.8±15.1 182.7 46.8 

 

5.4.2 Integrity of liposomes 

 

The integrity of liposomes after being encapsulated into microspheres and released from 

LIMs was confirmed by three different approaches, namely direct visualization, particle 

size measurement and fluorescence analysis. Fig. 5.11 shows the SEM images of the 

liposomes before the microencapsulation, the interior of the blank microspheres, and the 

liposomes inside LIMs after the microencapsulation process. MLVs (LIM4, Table 5.2) 

were used because we wanted to observe the liposomes and polymer matrix under the 

same magnification. It can be seen from Fig. 5.11 (C) that the spherical shape of the 

liposomes was intact.  

 

Particle size of the liposomes after they were released from LIMs was measured. It can be 

seen from Table 5.2 that, for all the six LIM samples, the released liposomes had particle 

sizes close to those before they were encapsulated into the polymeric microspheres. 
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Figure 5.11 SEM images of (A) freeze-dried liposomes, and the interior of (B) blank microspheres and (C) 
LIMs. The liposomes were MLVs with particle size 1382.2 nm, lipid composition 

DOPC:DPPG:cholesterol=5:2:5 and total lipid concentration of 2 mM, and coated with chitosan. 

A 

B 

C 
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In order to quantitatively confirm the integrity of liposomes, we examined the 

fluorescence intensity after the liposomes were released. It should be noted that the 

composition of the liposomes used for the samples shown in Table 5.2 was different from 

that shown in Fig. 5.10. A higher cholesterol concentration was used here, because we 

wished to have negligible calcein leakage from the liposomes after they only underwent 

through vortex mixing so that the amount of liposomes could be measured by the 

fluorescence intensity of calcein. Incorporating cholesterol in the liposome composition is 

well known to make the lipid bilayers more rigid. The experimental results showed that no 

appreciable calcein (less than 10%) was leaked out in this case. Subsequently we 

measured the calcein leakage after the liposomes were released from the LIMs. It was 

found that the level of leakage was also less than 10%. Therefore, based on the results of 

the above three different approaches, it can be concluded that the integrity of liposomes 

after microencapsulation and release was largely preserved.  

 

5.4.3 Particle size, surface morphology and encapsulation efficiency 

 

As shown in Table 5.2, the particle size of all LIM samples was between 60 µm and 70 

µm, which was close to that of blank microspheres, i.e. 60.8±10.7 µm. This implies that 

encapsulation of liposomes didn’t affect the size of the polymeric matrix significantly. Fig. 

5.12 illustrates the surface morphology of LIMs. All samples had rather spherical shape. 

When no PEG was included in the polymer matrix, the surface of both the blank 

microspheres and the LIMs was smooth. The SEM images of the blank microspheres and 

the sample LIM1 are shown as examples. As expected, addition of the pore forming 
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additive PEG increased the porosity of LIMs. A lot of pores were visible on the surface of 

samples LIM5 and LIM6. Apparently, the latter, which had higher PEG concentration, 

was more porous than the former. The results of encapsulation efficiency of liposomes in 

LIMs are shown in Table 5.2. It can be seen that the encapsulation efficiency of all 

samples was around 50%. Furthermore, increasing the particle size of liposomes and 

decreasing the pore size of polymer matrix appeared to increase the encapsulation 

efficiency slightly. This is probably because in the LIM fabrication process, the liposomes 

will be more difficult to migrate to the outer water phase in the case of larger liposomes 

and smaller pores in the polymer matrix. 

 

  

  

Figure 5.12 Surface morphology of blank microspheres and LIMs 
 

 

Microspheres LIM1 

LIM5 LIM6 
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5.4.4 In vitro release 

 

Fig. 5.13 shows the in vitro release kinetics of liposomes from the LIMs. As can be seen 

from Fig. 5.13 (A), when the pore forming additive PEG was not used, the liposome 

release showed a delayed pattern, meaning that the liposomes had an off-release period 

before they began to be released at a constant rate. We assumed that both diffusion of the 

liposomes and degradation of the polymer matrix played important roles in the release 

mechanism. The interior of LIMs contained many pores interconnected by tortuous water 

channels. The liposomes had to diffuse through these channels before they could be 

released from the polymer matrix. Initially, the particle size of liposomes was too big to 

pass through the water channels so that the release rate during this period was very low. 

As time went on, the degradation of the polymer matrix caused expansion of the pores and 

channels, thereby leading to a sustained release of liposomes. 

 

This hypothesis was supported by the observation that smaller liposome size led to shorter 

off-release period, since smaller liposomes would be easier to diffuse through the water 

channels (Fig. 5.13 (A)). The MLVs with particle size of 1382.2 nm showed a significant 

release from LIMs only after 25 days, while a sustained release of LUVs with particle size 

of 185.5 nm started from as early as around the 5th day. Furthermore, the release rate 

during the sustained release period increased with decreasing particle size of the liposomes. 

Nearly half of the LUVs with particle size of 185.5 nm were released after 29 days, while 

in the case of the MLVs with particle size of 1382.2 nm only 5.1% of the liposomes were 

released during the same period. In order to obtain a sustained release pattern throughout 

the whole release period, PEG was included in the polymer matrix to facilitate the 
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formation of pores and water channels. As evidenced from Fig. 5.13 (B), the off-release 

period disappeared after PEG was added. Higher PEG concentration resulted in faster 

release rate, as the LIMs had greater porosity in this case. Up to 73.6% of the liposomes 

were released after 29 days when 10% PEG was used. In general, by adjusting the 

properties of liposomes and polymer matrix, different release patterns can be achieved and 

the release rate can be controlled. 

 

5.5 Summary 

 

A novel drug delivery system, liposomes-in-microsphere (LIM) of biodegradable 

polymers, which is based on the concept of combination of the polymer-based and the 

lipid-based controlled drug delivery systems, was successfully developed by modifying 

the double emulsion process and coating the liposomes with chitosan. It was found that the 

liposomes encapsulated in and released from the polymeric microspheres were intact. The 

encapsulation efficiency of liposomes in the polymeric microspheres was about 50%. The 

encapsulation of liposomes didn’t significantly change the particle size and surface 

morphology of the polymeric microspheres. In vitro, the liposomes were released at a 

nearly constant rate from the polymeric microspheres after an initial off-release period. It 

was found that decreasing the particle size of liposomes and increasing the pore size of the 

polymer matrix shortened the initial off-release period and increased the release rate. LIMs 

could integrate the advantages, avoid the disadvantages of the polymer-based and the 

lipid-based systems, and lead to new applications such as protecting biological activity of 

proteins and peptides, increasing the efficacy and decreasing the side effects of anticancer 

drugs, and facilitating the targeted gene delivery. 
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(A) Effect of the particle size of liposomes (no PEG was used) 
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(B) Effect of the pore size of polymer matrix (LUVs of particle size of 185.5 nm were used) 

 
Figure 5.13 In vitro release of liposomes from LIMs 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

The versatile applications of polymeric microspheres for controlled release have been 

demonstrated. Prepared by the technique of solvent extraction/evaporation, this system can 

be used to microencapsulate water-insoluble agents with an anticancer drug paclitaxel as 

the prototype, water-soluble agents with a protein HSA as the prototype, and other 

delivery devices with liposomes as the prototype. These agents/devices can be released in 

controlled manners. 

 

The properties of polymeric microspheres can be engineered by material and process 

parameters. In the present thesis, we have mainly investigated the effects of materials of 

different hydrophobicity. These effects are dependent on the fabrication methods (single 

emulsion or double emulsion) and the material types (polymers, solvents, or additives). It 

has been found that the following novel materials could improve the quality of the 

polymeric microspheres: PLA-PEG-PLA as the polymer, ethyl acetate/acetone as the 

solvents, and Vitamin E TPGS as the additive. 

 

The microsphere technique and the liposome technique have been combined in the present 

thesis to form a novel delivery device LIM, i.e. liposomes-in-microsphere. The liposomes 

remain intact after the microencapsulation and release. The in vitro release of liposomes 

from the polymer matrix could be controlled by the properties of liposomes and the 
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polymeric microspheres. LIMs could integrate the advantages and eliminate the 

disadvantages of the polymer based and the lipid based systems, and lead to new 

applications. Furthermore, the idea of combining different drug delivery systems could be 

applied to develop other new devices to meet various clinical requirements. 

 

The successful preparation of LIM confirms that it is feasible to encapsulate 

supramolecular structures into microparticles. This fact might have implications in many 

areas such as nanotechnology and tissue engineering. 

 

6.2 Recommendations 

 

The clinical applications of the LIM system should be pursued. Most interesting 

development would be to examine its effects on the protection of protein activity. 

Preliminary studies in our laboratory have shown that interferon-β, a helical cytokine and 

currently the best drug to treat multiple sclerosis [Karpusas et al. 1998], lost practically all 

of its antiviral activity after being encapsulated into PLGA microspheres. Common protein 

stabilizers, such as trehalose, mannitol and Tween 20, showed no positive effect for 

interferon-β. In contrast to the above stabilizers, the liposomes in LIM could have 

protective effects for all proteins because its protective effects are based on physical cover. 

Since in the present thesis it has been shown that liposomes can be encapsulated into and 

released from microspheres in intact form, it should be reasonable to predict that LIM 

system could be very useful to protect the activity of interferon-β in its controlled delivery 

application. 
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It is suggested that the in vivo behavior of the drug delivery systems be examined. Only in 

the real biological environments can many questions be answered: where do the delivery 

devices go after they enter the animal/human body? What are the interactions between the 

delivery devices and tissues? Is the in vivo drug release kinetics the same as the in vitro 

one? How is the therapeutic effect of the drug after it is loaded into the delivery device? 

 

Mathematical modeling could be applied in the research of controlled drug release. 

Mathematical modeling is powerful in rational design of drug delivery systems. It can help 

to identify the drug release mechanism and predict the drug release kinetics. 

 

The feasibility to scale-up the fabrication process of the delivery devices should be 

investigated. This is another contribution that a chemical engineer can make in the area of 

controlled drug delivery. Many issues need to be addressed: are the techniques used in the 

present thesis suitable for large-scale production? How to control the quality of the 

products? etc.  
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