18 research outputs found

    Frictional Behavior of Atomically Thin Sheets: Hexagonal-Shaped Graphene Islands Grown on Copper by Chemical Vapor Deposition

    No full text
    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets

    Photochemical Reaction in Monolayer MoS<sub>2</sub> <i>via</i> Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy

    No full text
    Photoluminescence (PL) from monolayer MoS<sub>2</sub> has been modulated using plasma treatment or thermal annealing. However, a systematic way of understanding the underlying PL modulation mechanism has not yet been achieved. By introducing PL and Raman spectroscopy, we analyze that the PL modulation by laser irradiation is associated with structural damage and associated oxygen adsorption on the sample in ambient conditions. Three distinct behaviors were observed according to the laser irradiation time: (i) slow photo-oxidation at the initial stage, where the physisorption of ambient gases gradually increases the PL intensity; (ii) fast photo-oxidation at a later stage, where chemisorption increases the PL intensity abruptly; and (iii) photoquenching, with complete reduction of PL intensity. The correlated confocal Raman spectroscopy confirms that no structural deformation is involved in slow photo-oxidation stage; however, the structural disorder is invoked during the fast photo-oxidation stage, and severe structural degradation is generated during the photoquenching stage. The effect of oxidation is further verified by repeating experiments in vacuum, where the PL intensity is simply degraded with laser irradiation in a vacuum due to a simple structural degradation without involving oxygen functional groups. The charge scattering by oxidation is further explained by the emergence/disappearance of neutral excitons and multiexcitons during each stage

    Spectroscopic Visualization of Grain Boundaries of Monolayer Molybdenum Disulfide by Stacking Bilayers

    No full text
    Polycrystalline growth of molybdenum disulfide (MoS<sub>2</sub>) using chemical vapor deposition (CVD) methods is subject to the formation of grain boundaries (GBs), which have a large effect on the electrical and optical properties of MoS<sub>2</sub>-based optoelectronic devices. The identification of grains and GBs of CVD-grown monolayer MoS<sub>2</sub> has traditionally required atomic resolution microscopy or nonlinear optical imaging techniques. Here, we present a simple spectroscopic method for visualizing GBs of polycrystalline monolayer MoS<sub>2</sub> using stacked bilayers and mapping their indirect photoluminescence (PL) peak positions and Raman peak intensities. We were able to distinguish a GB between two MoS<sub>2</sub> grains with tilt angles as small as 6° in their grain orientations and, based on the inspection of several GBs, found a simple empirical rule to predict the location of the GBs. In addition, the large number of twist angle domains traced through our facile spectroscopic mapping technique allowed us to identify a continuous evolution of the coupled structural and optical properties of bilayer MoS<sub>2</sub> in the vicinity of the 0° and 60° commensuration angles which were explained by elastic deformation model of the MoS<sub>2</sub> membranes

    Understanding Coulomb Scattering Mechanism in Monolayer MoS<sub>2</sub> Channel in the Presence of <i>h</i>‑BN Buffer Layer

    No full text
    As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (<i>T</i>) noise measurements to understand the Coulomb scattering mechanism in the MoS<sub>2</sub> channel in the presence of <i>h</i>-BN buffer layer on the silicon dioxide (SiO<sub>2</sub>) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (α<sub>SC</sub>) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of <i>h</i>-BN on SiO<sub>2</sub> provides the suppression of α<sub>SC</sub> twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO<sub>2</sub> at <i>T</i> = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping–detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal–MoS<sub>2</sub> contact region

    Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS<sub>2</sub>/<i>h</i>‑BN Heterostructure

    No full text
    Layered hexagonal boron nitride (<i>h</i>-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the <i>h</i>-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of <i>h</i>-BN thin film as a substrate for monolayer MoS<sub>2</sub> can induce ∼6.5 × 10<sup>11</sup> cm<sup>–2</sup> electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS<sub>2</sub> on <i>h</i>-BN was found to be ∼5 × 10<sup>13</sup> cm<sup>–2</sup> at high temperature and was significantly reduced at low temperature. Further, the inserted <i>h</i>-BN enables us to reduce the Coulombic charge scattering in MoS<sub>2</sub>/<i>h</i>-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal–insulator transition at a much lower charge density of ∼1.0 × 10<sup>12</sup> cm<sup>–2</sup> (<i>T</i> = 25 K). The reduced effective Schottky barrier height in MoS<sub>2</sub>/<i>h</i>-BN is attributed to the decreased effective work function of MoS<sub>2</sub> arisen from <i>h</i>-BN induced <i>n</i>-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO<sub>2</sub>

    Observation of Charge Transfer in Heterostructures Composed of MoSe<sub>2</sub> Quantum Dots and a Monolayer of MoS<sub>2</sub> or WSe<sub>2</sub>

    No full text
    Monolayer transition metal dichalcogenides (TMDs) are atomically thin semiconductor films that are ideal platforms for the study and engineering of quantum heterostructures for optoelectronic applications. We present a simple method for the fabrication of TMD heterostructures containing MoSe<sub>2</sub> quantum dots (QDs) and a MoS<sub>2</sub> or WSe<sub>2</sub> monolayer. The strong modification of photoluminescence and Raman spectra that includes the quenching of MoSe<sub>2</sub> QDs and the varied spectral weights of trions for the MoS<sub>2</sub> and WSe<sub>2</sub> monolayers were observed, suggesting the charge transfer occurring in these TMD heterostructures. Such optically active heterostructures, which can be conveniently fabricated by dispersing TMD QDs onto TMD monolayers, are likely to have various nanophotonic applications because of their versatile and controllable properties

    Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS<sub>2</sub> Integrated with Plasmonic Nanoantenna Array

    No full text
    The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS<sub>2</sub> with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton–plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, due to the decreased damping of MoS<sub>2</sub> excitons interacting with the plasmonic resonances of the bowtie array at low temperatures stronger exciton–plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum. The Fano line shape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses

    Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS<sub>2</sub> Field-Effect Transistors

    No full text
    Although monolayer transition metal dichalcogenides (TMDs) exhibit superior optical and electrical characteristics, their use in digital switching devices is limited by incomplete understanding of the metal contact. Comparative studies of Au top and edge contacts with monolayer MoS<sub>2</sub> reveal a temperature-dependent ideality factor and Schottky barrier height (SBH). The latter originates from inhomogeneities in MoS<sub>2</sub> caused by defects, charge puddles, and grain boundaries, which cause local variation in the work function at Au–MoS<sub>2</sub> junctions and thus different activation temperatures for thermionic emission. However, the effect of inhomogeneities due to impurities on the SBH varies with the junction structure. The weak Au–MoS<sub>2</sub> interaction in the top contact, which yields a higher SBH and ideality factor, is more affected by inhomogeneities than the strong interaction in the edge contact. Observed differences in the SBH and ideality factor in different junction structures clarify how the SBH and inhomogeneities can be controlled in devices containing TMD materials

    Simultaneous Hosting of Positive and Negative Trions and the Enhanced Direct Band Emission in MoSe<sub>2</sub>/MoS<sub>2</sub> Heterostacked Multilayers

    No full text
    Heterostacking of layered transition-metal dichalcogenide (LTMD) monolayers (1Ls) offers a convenient way of designing two-dimensional exciton systems. Here we demonstrate the simultaneous hosting of positive trions and negative trions in heterobilayers made by vertically stacking 1L MoSe<sub>2</sub> and 1L MoS<sub>2</sub>. The charge transfer occurring between the 1Ls of MoSe<sub>2</sub> and MoS<sub>2</sub> converted the polarity of trions in 1L MoSe<sub>2</sub> from negative to positive, resulting in the presence of positive trions in the 1L MoSe<sub>2</sub> and negative trions in the 1L MoS<sub>2</sub> of the same heterostacked bilayer. Significantly enhanced MoSe<sub>2</sub> photoluminescence (PL) in the heterostacked bilayers compared to the PL of 1L MoSe<sub>2</sub> alone suggests that, unlike other previously reported heterostacked bilayers, direct band transition of 1L MoSe<sub>2</sub> in heterobilayer was enhanced after the vertical heterostacking. Moreover, by inserting hexagonal BN monolayers between 1L MoSe<sub>2</sub> and 1L MoS<sub>2</sub>, we were able to adjust the charge transfer to maximize the MoSe<sub>2</sub> PL of the heteromultilayers and have achieved a 9-fold increase of the PL emission. The enhanced optical properties of our heterostacked LTMDs suggest the exciting possibility of designing LTMD structures that exploit the superior optical properties of 1L LTMDs

    Simple Chemical Treatment to n‑Dope Transition-Metal Dichalcogenides and Enhance the Optical and Electrical Characteristics

    No full text
    The optical and electrical properties of monolayer transition-metal dichalcogenides (1L-TMDs) are critically influenced by two dimensionally confined exciton complexes. Although extensive studies on controlling the optical properties of 1L-TMDs through external doping or defect engineering have been carried out, the effects of excess charges, defects, and the populations of exciton complexes on the light emission of 1L-TMDs are not yet fully understood. Here, we present a simple chemical treatment method for n-dope 1L-TMDs, which also enhances their optical and electrical properties. We show that dipping 1Ls of MoS<sub>2</sub>, WS<sub>2</sub>, and WSe<sub>2</sub>, whether exfoliated or grown by chemical vapor deposition, into methanol for several hours can increase the electron density and also can reduce the defects, resulting in the enhancement of their photoluminescence, light absorption, and the carrier mobility. This methanol treatment was effective for both n- and p-type 1L-TMDs, suggesting that the surface restructuring around structural defects by methanol is responsible for the enhancement of optical and electrical characteristics. Our results have revealed a simple process for external doping that can enhance both the optical and electrical properties of 1L-TMDs and help us understand how the exciton emission in 1L-TMDs can be modulated by chemical treatments
    corecore