273 research outputs found

    Counting electrons transferred through a thin alumina film into Au chains

    Get PDF
    Low-temperature STM measurements combined with density functional theory calculations are employed to study the adsorption of gold on alumina/NiAl(110). The binding of Au monomers involves breaking of an oxide Al-O bond below the adatom and stabilizing the hence undercoordinated O ion by forming a new bond to an Al atom in the NiAl. The adsorption implies negative charging of the adatom. The linear arrangement of favorable binding sites induces the self-organization of Au atoms into chains. For every ad-chain, the number of transfer electrons from the support is determined by analyzing the node structure of the corresponding highest occupied molecular orbital

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    Stability of sub-surface oxygen at Rh(111)

    Full text link
    Using density-functional theory (DFT) we investigate the incorporation of oxygen directly below the Rh(111) surface. We show that oxygen incorporation will only commence after nearly completion of a dense O adlayer (\theta_tot = 1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested octahedral sub-surface site occupancy, inducing a site-switch of the on-surface species from fcc to hcp sites, is indeed found to be a rather low energy structure. Our results indicate that at even higher coverages oxygen incorporation is followed by oxygen agglomeration in two-dimensional sub-surface islands directly below the first metal layer. Inside these islands, the metastable hcp/octahedral (on-surface/sub-surface) site combination will undergo a barrierless displacement, introducing a stacking fault of the first metal layer with respect to the underlying substrate and leading to a stable fcc/tetrahedral site occupation. We suggest that these elementary steps, namely, oxygen incorporation, aggregation into sub-surface islands and destabilization of the metal surface may be more general and precede the formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    The structure of epitaxial V2O3 films and their surfaces : a medium energy ion scattering study

    Get PDF
    Medium energy ion scattering, using 100 keV H+ incident ions, has been used to investigate the growth of epitaxial films, up to thicknesses of ~200 Å, of V2O3 on both Pd(111) and Au(111). Scattered-ion energy spectra provide a measure of the average film thickness and the variations in this thickness, and show that, with suitable annealing, the crystalline quality is good. Plots of the scattering yield as a function of scattering angle, so-called blocking curves, have been measured for two different incidence directions and have been used to determine the surface structure. Specifically, scattering simulations for a range of different model structures show poor agreement with experiment for half-metal (….V’O3V) and vanadyl (….V’O3V=O) terminations, with and without surface interlayer relaxations. However, good agreement with experiment is found for the modified oxygen-termination structure, first proposed by Kresse et al., in which a subsurface V half-metal layer is moved up into the outermost V buckled metal layer to produce a VO2 overlayer on the underlying V2O3, with an associated layer structure of ….O3VV’’V’O3

    Potential, core-level and d band shifts at transition metal surfaces

    Full text link
    We have extended the validity of the correlation between the surface 3d-core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d transition metal series and to the neighboring elements Sr and Ag via accurate first-principles calculations. We find that the correlation is quasilinear and robust with respect to the differencies both between initial and final-state calculations of the SCLS's and two distinct measures of the SDBS's. We show that despite the complex spatial dependence of the surface potential shift (SPS) and the location of the 3d and 4d orbitals in different regions of space, the correlation exists because the sampling of the SPS by the 3d and 4d orbitals remains similar. We show further that the sign change of the SCLS's across the transition series does indeed arise from the d band-narrowing mechanism previously proposed. However, while in the heavier transition metals the predicted increase of d electrons in the surface layer relative to the bulk arises primarily from transfers from s and p states to d states within the surface layer, in the lighter transition metals the predicted decrease of surface d electrons arises primarily from flow out into the vacuum.Comment: RevTex, 22 pages, 5 figures in uufiles form, to appear in Phys.Rev.

    Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)

    Full text link
    We have performed high resolution XPS experiments of the Ru(0001) surface, both clean and covered with well-defined amounts of oxygen up to 1 ML coverage. For the clean surface we detected two distinct components in the Ru 3d_{5/2} core level spectra, for which a definite assignment was made using the high resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2), p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level peaks which are shifted up to 1 eV to higher binding energies. Very good agreement with density functional theory calculations of these Surface Core Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru SCLSs turns out to be the number of directly coordinated O atoms. Since the calculations permit the separation of initial and final state effects, our results give valuable information for the understanding of bonding and screening at the surface, otherwise not accessible in the measurement of the core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Highly Active and Stable Ni/La-Doped Ceria Material for Catalytic CO2Reduction by Reverse Water-Gas Shift Reaction

    Get PDF
    [EN] The design of an active, effective, and economically viable catalyst for CO2 conversion into value-added products is crucial in the fight against global warming and energy demand. We have developed very efficient catalysts for reverse water-gas shift (rWGS) reaction. Specific conditions of the synthesis by combustion allow the obtention of macroporous materials based on nanosized Ni particles supported on a mixed oxide of high purity and crystallinity. Here, we show that Ni/La-doped CeO2 catalysts─with the "right"Ni and La proportions─have an unprecedented catalytic performance per unit mass of catalyst for the rWGS reaction as the first step toward CO2 valorization. Correlations between physicochemical properties and catalytic activity, obtained using a combination of different techniques such as X-ray and neutron powder diffraction, Raman spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, electron microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the nature of the active sites. This finding offers a fundamental basis for developing economical catalysts that can be effectively used for CO2 reduction with hydrogen. A catalyst based on Ni0.07/(Ce0.9La0.1Ox)0.93 shows a CO production of 58 × 10-5 molCO·gcat-1·s-1 (700 °C, H2/CO2 = 2; selectivity to CO > 99.5), being stable for 100 h under continuous reaction.We acknowledge the financial support of the Spanish Ministry of Science and Innovation (PID2021-123287OB-I00, PID2021-122477-OB-I00, PID2021-128915NB-I00, and RTI2018-101604-B-I00) and of the CSIC through the i-LINK 2021 program (LINKA20408). Financial support has also been received from AEI-MINECO/FEDER (Nympha Project, PID2019-106315RB-I00), “Comunidad de Madrid” regional government, and the European Structural Funds (FotoArt-CM project, S2018/NMT-4367). Authors also acknowledge financial support from the grant PLEC2021-007906 funded by MCIN/AEI/10.13039/501100011033 and the “European Union NextGenerationEU/PRTR”. We are grateful to ILL (France) for making all facilities available. This project also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 832121. Computer time provided by the RES (Red Española de Supercomputación) resources at the MareNostrum 4 (BSC, Barcelona) node and the DECI resources at the BEM cluster of the WCSS based in Poland with the support from PRACE aislb is acknowledged
    corecore