2,623 research outputs found
Auxiliary Field Diffusion Monte Carlo calculation of nuclei with A<40 with tensor interactions
We calculate the ground-state energy of 4He, 8He, 16O, and 40Ca using the
auxiliary field diffusion Monte Carlo method in the fixed phase approximation
and the Argonne v6' interaction which includes a tensor force. Comparison of
our light nuclei results to those of Green's function Monte Carlo calculations
shows the accuracy of our method for both open and closed shell nuclei. We also
apply it to 16O and 40Ca to show that quantum Monte Carlo methods are now
applicable to larger nuclei.Comment: 4 pages, no figure
Contact interaction in an unitary ultracold Fermi gas
An ultracold Fermi atomic gas at unitarity presents universal properties that
in the diluted limit can be well described by a contact interaction. By
employing a guide function with correct boundary conditions and making simple
modifications to the sampling procedure we are able to handle for the first
time a true contact interaction in a quantum Monte Carlo calculation. The
results are obtained with small variances. Our calculations for the Bertsch and
contact parameters are in excellent agreement with published experiments. The
possibility of using a more faithfully description of ultracold atomic gases
can help uncover features yet unknown of the ultracold atomic gases. In
addition, this work paves the way to perform quantum Monte Carlo calculations
for systems interacting with contact interactions, where in many cases the
description using potentials with finite effective range might not be accurate
Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?
We present quantum Monte Carlo calculations of few-neutron systems confined
in external potentials based on local chiral interactions at
next-to-next-to-leading order in chiral effective field theory. The energy and
radial densities for these systems are calculated in different external
Woods-Saxon potentials. We assume that their extrapolation to zero
external-potential depth provides a quantitative estimate of three- and
four-neutron resonances. The validity of this assumption is demonstrated by
benchmarking with an exact diagonalization in the two-body case. We find that
the extrapolated trineutron resonance, as well as the energy for shallow well
depths, is lower than the tetraneutron resonance energy. This suggests that a
three-neutron resonance exists below a four-neutron resonance in nature and is
potentially measurable. To confirm that the relative ordering of three- and
four-neutron resonances is not an artifact of the external confinement, we test
that the odd-even staggering in the helium isotopic chain is reproduced within
this approach. Finally, we discuss similarities between our results and
ultracold Fermi gases.Comment: 6 pages, 5 figures, version compatible with published lette
Quantum Monte Carlo study of inhomogeneous neutron matter
We present an ab-initio study of neutron drops. We use Quantum Monte Carlo
techniques to calculate the energy up to 54 neutrons in different external
potentials, and we compare the results with Skyrme forces. We also calculate
the rms radii and radial densities, and we find that a re-adjustment of the
gradient term in Skyrme is needed in order to reproduce the properties of these
systems given by the ab-initio calculation. By using the ab-initio results for
neutron drops for close- and open-shell configurations, we suggest how to
improve Skyrme forces when dealing with systems with large isospin-asymmetries
like neutron-rich nuclei.Comment: 8 pages, 6 figures, talk given at Horizons on Innovative Theories,
Experiments, and Supercomputing in Nuclear Physics 2012, (HITES2012), New
Orleans, Louisiana, June 4-7, 2012; to appear in Journal of Physics:
Conference Series (JPCS
Recent progress on the accurate determination of the equation of state of neutron and nuclear matter
The problem of accurately determining the equation of state of nuclear and
neutron matter at density near and beyond saturation is still an open
challenge. In this paper we will review the most recent progress made by means
of Quantum Monte Carlo calculations, which are at present the only ab-inito
method capable to treat a sufficiently large number of particles to give
meaningful estimates depending only on the choice of the nucleon-nucleon
interaction. In particular, we will discuss the introduction of
density-dependent interactions, the study of the temperature dependence of the
equation of state, and the possibility of accurately studying the effect of the
onset of hyperons by developing an accurate hyperon-nucleon and
hyperon-nucleon-nucleon interaction.Comment: 3 figures, 1 table, to appear in the Proceedings of "XIII Convegno di
Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8,
201
- …
