6 research outputs found

    Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers

    Get PDF
    Traumatic spinal cord injury (SCI) leads to immediate neuronal and axonal damage at the focal injury site and triggers secondary pathologic series of events resulting in sensorimotor and autonomic dysfunction below the level of injury. Although there is no cure for SCI, neuroprotective and regenerative therapies show promising results at the preclinical stage. There is a pressing need to develop non-invasive outcome measures that can indicate whether a candidate therapeutic agent or a cocktail of therapeutic agents are positively altering the underlying disease processes. Recent conventional MRI studies have quantified spinal cord lesion characteristics and elucidated their relationship between severity of injury to clinical impairment and recovery. Next to the quantification of the primary cord damage, quantitative MRI measures of spinal cord (rostrocaudally to the lesion site) and brain integrity have demonstrated progressive and specific neurodegeneration of afferent and efferent neuronal pathways. MRI could therefore play a key role to ultimately uncover the relationship between clinical impairment/recovery and injury-induced neurodegenerative changes in the spinal cord and brain. Moreover, neuroimaging biomarkers hold promises to improve clinical trial design and efficiency through better patient stratification. The purpose of this narrative review is therefore to propose a guideline of clinically available MRI sequences and their derived neuroimaging biomarkers that have the potential to assess tissue damage at the macro- and microstructural level after SCI. In this piece, we make a recommendation for the use of key MRI sequences—both conventional and advanced—for clinical work-up and clinical trials

    Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis

    Get PDF
    OBJECTIVE: To assess the association between proximity to the inner (ventricular and aqueductal) and outer (pial) surfaces of the brain and the distribution of normal appearing white matter (NAWM) and grey matter (GM) abnormalities, and white matter (WM) lesions, in multiple sclerosis (MS). METHODS: 67 people with relapse-onset MS and 30 healthy controls were included in the study. Volumetric T1 images and high-resolution (1 mm(3)) magnetisation transfer ratio (MTR) images were acquired and segmented into 12 bands between the inner and outer surfaces of the brain. The first and last bands were discarded to limit partial volume effects with cerebrospinal fluid. MTR values were computed for all bands in supratentorial NAWM, cerebellar NAWM and brainstem NA tissue, and deep and cortical GM. Band WM lesion volumes were also measured. RESULTS: Proximity to the ventricular surfaces was associated with progressively lower MTR values in the MS group but not in controls in supratentorial and cerebellar NAWM, brainstem NA and in deep and cortical GM. The density of WM lesions was associated with proximity to the ventricles only in the supratentorial compartment, and no link was found with distance from the pial surfaces. CONCLUSIONS: In MS, MTR abnormalities in NAWM and GM are related to distance from the inner and outer surfaces of the brain, and this suggests that there is a common factor underlying their spatial distribution. A similar pattern was not found for WM lesions, raising the possibility that different factors promote their formation

    Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART):a phase 2b, multiarm, double-blind, randomised placebo-controlled trial

    Get PDF
    Neurodegeneration is the pathological substrate that causes major disability in secondary progressive multiple sclerosis. A synthesis of preclinical and clinical research identified three neuroprotective drugs acting on different axonal pathobiologies. We aimed to test the efficacy of these drugs in an efficient manner with respect to time, cost, and patient resource. Methods: We did a phase 2b, multiarm, parallel group, double-blind, randomised placebo-controlled trial at 13 clinical neuroscience centres in the UK. We recruited patients (aged 25-65 years) with secondary progressive multiple sclerosis who were not on disease-modifying treatment and who had an Expanded Disability Status Scale (EDSS) score of 4·0-6·5. Participants were randomly assigned (1:1:1:1) at baseline, by a research nurse using a centralised web-based service, to receive twice-daily oral treatment of either amiloride 5 mg, fluoxetine 20 mg, riluzole 50 mg, or placebo for 96 weeks. The randomisation procedure included minimisation based on sex, age, EDSS score at randomisation, and trial site. Capsules were identical in appearance to achieve masking. Patients, investigators, and MRI readers were unaware of treatment allocation. The primary outcome measure was volumetric MRI percentage brain volume change (PBVC) from baseline to 96 weeks, analysed using multiple regression, adjusting for baseline normalised brain volume and minimisation criteria. The primary analysis was a complete-case analysis based on the intention-to-treat population (all patients with data at week 96). This trial is registered with ClinicalTrials.gov, NCT01910259

    Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MS-SMART): a multiarm phase IIb randomised, double-blind, placebo-controlled clinical trial comparing the efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis

    Get PDF
    Introduction: The major unmet need in multiple sclerosis (MS) is for neuroprotective therapies that can slow (or ideally stop) the rate of disease progression. The UK MS Society Clinical Trials Network (CTN) was initiated in 2007 with the purpose of developing a national, efficient, multiarm trial of repurposed drugs. Key underpinning work was commissioned by the CTN to inform the design, outcome selection and drug choice including animal models and a systematic review. This identified seven leading oral agents for repurposing as neuroprotective therapies in secondary progressive MS (SPMS). The purpose of the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MS-SMART) will be to evaluate the neuroprotective efficacy of three of these drugs, selected with distinct mechanistic actions and previous evidence of likely efficacy, against a common placebo arm. The interventions chosen were: amiloride (acid-sensing ion channel antagonist); fluoxetine (selective serotonin reuptake inhibitor) and riluzole (glutamate antagonist). Methods and analysis: Patients with progressing SPMS will be randomised 1:1:1:1 to amiloride, fluoxetine, riluzole or matched placebo and followed for 96 weeks. The primary outcome will be the percentage brain volume change (PBVC) between baseline and 96 weeks, derived from structural MR brain imaging data using the Structural Image Evaluation, using Normalisation, of Atrophy method. With a sample size of 90 per arm, this will give 90% power to detect a 40% reduction in PBVC in any active arm compared with placebo and 80% power to detect a 35% reduction (analysing by analysis of covariance and with adjustment for multiple comparisons of three 1.67% two-sided tests), giving a 5% overall two-sided significance level. MS-SMART is not powered to detect differences between the three active treatment arms. Allowing for a 20% dropout rate, 110 patients per arm will be randomised. The study will take place at Neuroscience centres in England and Scotland

    Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial

    Get PDF
    Background Neurodegeneration is the pathological substrate that causes major disability in secondary progressive multiple sclerosis. A synthesis of preclinical and clinical research identified three neuroprotective drugs acting on different axonal pathobiologies. We aimed to test the efficacy of these drugs in an efficient manner with respect to time, cost, and patient resource. Methods We did a phase 2b, multiarm, parallel group, double-blind, randomised placebo-controlled trial at 13 clinical neuroscience centres in the UK. We recruited patients (aged 25–65 years) with secondary progressive multiple sclerosis who were not on disease-modifying treatment and who had an Expanded Disability Status Scale (EDSS) score of 4·0–6·5. Participants were randomly assigned (1:1:1:1) at baseline, by a research nurse using a centralised web-based service, to receive twice-daily oral treatment of either amiloride 5 mg, fluoxetine 20 mg, riluzole 50 mg, or placebo for 96 weeks. The randomisation procedure included minimisation based on sex, age, EDSS score at randomisation, and trial site. Capsules were identical in appearance to achieve masking. Patients, investigators, and MRI readers were unaware of treatment allocation. The primary outcome measure was volumetric MRI percentage brain volume change (PBVC) from baseline to 96 weeks, analysed using multiple regression, adjusting for baseline normalised brain volume and minimisation criteria. The primary analysis was a complete-case analysis based on the intention-to-treat population (all patients with data at week 96). This trial is registered with ClinicalTrials.gov, NCT01910259. Findings Between Jan 29, 2015, and June 22, 2016, 445 patients were randomly allocated amiloride (n=111), fluoxetine (n=111), riluzole (n=111), or placebo (n=112). The primary analysis included 393 patients who were allocated amiloride (n=99), fluoxetine (n=96), riluzole (n=99), and placebo (n=99). No difference was noted between any active treatment and placebo in PBVC (amiloride vs placebo, 0·0% [95% CI −0·4 to 0·5; p=0·99]; fluoxetine vs placebo −0·1% [–0·5 to 0·3; p=0·86]; riluzole vs placebo −0·1% [–0·6 to 0·3; p=0·77]). No emergent safety issues were reported. The incidence of serious adverse events was low and similar across study groups (ten [9%] patients in the amiloride group, seven [6%] in the fluoxetine group, 12 [11%] in the riluzole group, and 13 [12%] in the placebo group). The most common serious adverse events were infections and infestations. Three patients died during the study, from causes judged unrelated to active treatment; one patient assigned amiloride died from metastatic lung cancer, one patient assigned riluzole died from ischaemic heart disease and coronary artery thrombosis, and one patient assigned fluoxetine had a sudden death (primary cause) with multiple sclerosis and obesity listed as secondary causes. Interpretation The absence of evidence for neuroprotection in this adequately powered trial indicates that exclusively targeting these aspects of axonal pathobiology in patients with secondary progressive multiple sclerosis is insufficient to mitigate neuroaxonal loss. These findings argue for investigation of different mechanistic targets and future consideration of combination treatment trials. This trial provides a template for future simultaneous testing of multiple disease-modifying medicines in neurological medicine. Funding Efficacy and Mechanism Evaluation (EME) Programme, an MRC and NIHR partnership, UK Multiple Sclerosis Society, and US National Multiple Sclerosis Society
    corecore