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Abstract 
Objective: To assess the association between proximity to the inner (ventricular and 

aqueductal) and outer (pial) surfaces of the brain and the distribution of normal 

appearing white matter (NAWM) and grey matter (GM) abnormalities, and white matter 

(WM) lesions, in multiple sclerosis (MS). 

 

Methods: 67 people with relapse-onset MS and 30 healthy controls were included in 

the study. Volumetric T1 images and high-resolution (1 mm3) magnetization transfer  

ratio (MTR) images were acquired and segmented into 12 bands between the inner 

and outer surfaces of the brain. The first and last bands were discarded to limit partial 

volume effects with cerebrospinal fluid. MTR values computed for all bands in supra-

tentorial NAWM, cerebellar NAWM and brainstem NA tissue, and deep and cortical 

GM. Band WM lesion volumes were also measured. 

 

Results: Proximity to the ventricular surfaces was associated with progressively lower 

MTR values in the MS group but not in controls in in supra-tentorial and cerebellar 

NAWM, brainstem NA and in deep and cortical GM.  The density of WM lesions was 

associated with proximity to the ventricles only in the supra-tentorial compartment, and 

no link was found with distance from the pial surfaces. 

 

Conclusions: In MS MTR abnormalities in NAWM and GM are related to distance from 

the inner and outer surfaces of the brain, and this suggests that there is a common 

factor underling their spatial distribution. A similar pattern was not found for WM 

lesions, raising the possibility that different factors promote their formation. 

 

Keywords: multiple sclerosis, normal appearing tissue, magnetisation transfer ratio.  
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Introduction 

 

Multiple sclerosis (MS) can affect any part of the central nervous system, but it does 

not do so uniformly. Histopathological studies have shown that demyelinating lesions 

in white matter (WM) and grey matter (GM) tend to occur close to the inner 

(periventricular) and outer (subpial) surfaces of the brain1,2 and that, at least in GM, 

extra-lesional abnormalities are also greater near the surfaces of the brain.1,3 Using 

magnetisation transfer ratio (MTR) imaging, similar gradients in cortical GM 

abnormalities have been shown in vivo4, and have also been found in periventricular 

WM5 and the spinal cord.6 Taken together, these observations suggest that tissues 

close to the surface of the brain and spinal cord are preferentially affected by, or more 

vulnerable to the effects of, MS.  

 

Several explanations for the distribution of MS lesions have been proposed. Veins 

have been firmly implicated, and WM lesions nearly always form around them.7-9  Many 

GM lesions also do so,10  although subpial cortical GM lesions do not appear to and 

instead have been linked with overlying meningeal inflammation.11-12 The same factors 

underlying the distribution of lesions may also be relevant for extra-lesional pathology, 

but this has been studied far less. In GM, meningeal inflammation has been linked 

with both subpial lesions and extra-lesional cortical GM neuronal loss1 but we are not 

aware of equivalent studies systematically investigating WM.  

 

While there are several potential mechanisms that may underly MS lesional and extra-

lesional abnormalities, and pathology in GM and WM, it is not clear if a single process 

unites them. Two key unanswered questions that are relevant to this: (1) Are 

superficial gradients in MS abnormalities similar in WM and GM; and (2) are they 

similar for WM lesions and extra-lesional abnormalities? To answer these questions 

we systematically assessed MS-associated reductions in GM and WM MTR, and the 

distribution of WM lesions, relative to the inner and outer surfaces of the brain. 

 

 
 

Methods 
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Participants  

People with a relapse onset MS,13 and healthy controls (HC), with no known 

neurological disease, between 18 and 65 years old, were recruited for this study. Data 

from 67 people with MS (20 males/47 females; mean age: 45.12±1.02 years; median 

EDSS: 4 [range 1-8]; 41 with relapsing remitting MS and 26 with secondary 

progressive MS) and 30 HCs (15 males/15 females; mean: 41.03±2.01 years) was 

obtained. All participants gave written informed consent. This study was approved by 

our local institutional ethics committee. 

 

MRI acquisition 

Using a 3 T Philips Achieva system (Philips Healthcare) with a 32-channel head coil 

and multi-transmit technology, the following sequences were acquired: 3D sagittal T1-

weighted fast field echo (FFE) scan: 1 x 1 x 1 mm3, inversion time = 824 ms, repetition 

time = 6.9 ms, echo time = 3.1 ms; dual-echo proton density/T2-weighted axial-oblique 

scans aligned with the anterior to posterior commissure line (1 x 1 x 3 mm3, repetition 

time = 3500 ms, echo time = 19/85 ms); and high resolution magnetization transfer 

imaging using a 3D slab-selective FFE sequence with two echoes: 1 x 1 x 1 mm3, 

repetition time = 6.4 ms, echo time = 2.7/4.3 ms, alpha = 9° with and without sinc 

Gaussian-shaped magnetization transfer pulses of nominal alpha = 360°, offset 

frequency 1 kHz, duration 16 ms. A turbo field echo (TFE) readout was used, with an 

echo train length of four, TFE shot interval 32.5 ms, giving a total time between 

successive magnetization transfer pulses of 50 ms, and scan time of 25 min. The two 

echoes were averaged (thereby increasing the signal-to-noise ratio) for both the 

magnetization transfer on and off data. 

 

Image analysis 
 

Registration of images 

The magnetisation transfer on and off images were symmetric- and inverse-consistent 

registered to the T1-weighted FFE scan using NiftyReg.14-15 MTR map (in percentage 

units (pu)) was calculated as ((MTRoff – MTRon) / MToff) x 100). 

 

WM lesions identification 



 

5 

WM lesions were identified and manually outlined on PD/T2-weighted scans using JIM 

(Version 6.0, Xinapse Systems, Northants) by OY and VS, and rechecked by DC. 

 

Lesion filling 

The PD/T2-weighted lesion masks were affine co-registered to the T1-weighted FFE 

scans using a pseudo-T1 image generated by subtracting the PD from the T2-

weighted image.16 Lesion masks were transformed from native space to T1 space 

using nearest-neighbour interpolation. The T1-weighted FFE scans were filled using 

a non-local patch match lesion filling technique.17  

 

Brain segmentation 

For brain tissue segmentation, we used Geodesical Information Flows (GIF).18 GIF is 

a segmentation technique that uses imaging databases as sources of information and 

is able to propagate voxel-wise annotations, such as tissue segmentation or 

parcellation, between morphologically dissimilar images by diffusing and mapping the 

available examples through intermediate steps.  GIF is part of NiftySeg 

(http://niftyseg.sf.net) software package and is free available as online tool at 

NiftyWeb19  (http://cmictig.cs.ucl.ac.uk/niftyweb). The image database used for this 

study is labeled according to the Neuromorphometrics protocol 

(http://www.neuromorphometrics.com/). T1-weighted volumetric images were 

segmented into whole brain GM, WM and cerebrospinal fluid (CSF). These images 

were used to calculate Brain parenchymal fraction (BPF) as: (GM volume + WM 

volume) / (GM volume + WM volume + CSF volume). GIF was also used to create the 

cortical GM, subcortical GM, supra-tentorial WM, cerebellar WM, and brainstem 

parcellation masks.  

 

Extraction of normal appearing white matter 

As in our previous work,5  to reduce the potential for lesional and peri-lesional 

abnormalities contaminating the normal appearing (NA) WM measures, lesions and a 

2 mm peri-lesional rim were subtracted from each subject’s WM mask to produce a 

NAWM mask. Moreover, as the brainstem includes both white matter and grey nuclei, 

lesions were and the 2 mm peri-lesional rim were also removed from the brainstem 

mask parcellation mask to produce a brainstem normal appearing tissue (NAT) mask.  
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Bands computation 

The whole brain was segmented into 12 concentric bands between the ventricular 

walls and the pial surfaces (Figure 1) based on the normalized distance map derived 

by following the normal to the Laplace equation isolines between the subpial and 

periventricular brain surfaces.4,20,21 The first and last band, i.e. those nearest to the 

ventricular and pial surfaces, were then excluded from further analysis to control for 

CSF partial volume effects, so leaving 10 bands, with bands 1 and 10 located adjacent 

to periventricular and subpial surfaces respectively. Average volume for each band is 

reported in Supplemental Table 1. We defined the bands 1-3 as encompassing the 

periventricular , bands 4-7 the central and bands 8-10 the subpial region. The bands 

were then intersected with the cortical (supra-tentorial and cerebellar) and deep GM 

(thalamus, caudate and putamen nuclei), supra-tentorial and cerebellar NAWM, and 

brainstem NAT masks to extract mean MTR. Lesion volumes were measured in WM, 

and the mean percentage occupied by lesions computed for each band. 

 

Quantification of gradients and of lesion volumes 

 

The following gradients were then computed for each subject 

 

- Periventricular gradient: The periventricular gradient was quantified as (MTR in 

band 3 – MTR in band 1) / 2. It was computed separately for supra-tentorial 

NAWM and cerebellar NAWM, brainstem NAT and for deep GM. 

 

- Central gradient: The central gradient was quantified as: (MTR in band 7 – MTR 

in band 4) / 3. It was computed separately for supra-tentorial NAWM and 

cerebellar NAWM, brainstem NAT and for deep GM.  

 

- Subpial gradient: The subpial gradient was quantified as (MTR in band 10 – 

MTR in band 8) / 2. It was computed separately in the brainstem NAT  as well 

as in cortical GM. 

 

Lastly, the percentage of lesional WM was quantified in periventricular (bands 1 to 3), 

deep (bands 4 to 7) and subpial (bands 8 to 10) regions as: 100 x WM band lesion 

volume / WM band volume. 
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Statistical analysis 

 

MRI measures were compared between MS and HC subjects using a general linear 

model including BPF, age, gender and band volume as covariates. A false discovery 

rate (FDR) approach as described by Benjamini and Hochberg was used to control for 

multiple comparisons.22 In all the analyses a p-value < 0.05 was considered 

statistically significant. 
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Results 
 
MTR abnormalities with proximity to the ventricular surfaces  

 

Supra-tentorial and cerebellar NAWM and brainstem NAT MTR findings for the MS 

and HC groups are shown in Figure 2, and Tables 1 and 2. In the supra-tentorial 

NAWM, cerebellar NAWM and brainstem NAT, MS subjects had lower MTR values 

compared with HC. This reduction in MTR was more marked in those bands nearer to 

the ventricular surfaces, and a steeper periventricular MTR gradient was observed in 

MS subjects when compared with HC in all these compartments (Table 1; supra-

tentorial: p=0.003, cerebellar: p=0.012, brainstem: p=0.015; p values corrected for 

BPF, age, gender and band volume). A significant difference between the 

periventricular and central gradients was also observed in MS subjects (p<0.001 for 

all compartments). 

 

Deep GM MTR findings are shown in Figure 3, and Table 1. An MS-associated 

reduction in deep GM MTR increased with proximity to the ventricular surface, and a 

steeper periventricular MTR gradient was observed in MS subjects compared with HC 

(Table 1; p=0.025; ; p value corrected for BPF, age, gender and band volume). A 

significant difference between periventricular and central gradient was observed in the 

MS group (p<0.001).  

.  

 

MTR abnormalities with proximity to the pial surfaces 

 

In subpial NAT bands in the brainstem (bands 8-10) MTR was lower in MS compared 

with the HC group, as reported in Table 2. This reduction was more marked in those 

bands nearest to the subpial surface (Figure 2), and a steeper subpial MTR gradient 

was observed in MS subjects compared to HC (p=0.015; p value corrected for BPF, 

age, gender and band volume). A significant difference between subpial and central 

gradients also observed in MS group (p<0.001).   
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Cortical GM MTR results are shown in Figure 4 and Table 2. The cortical GM subpial 

gradient was significantly steeper in subjects with MS compared with HC (p=0.020; p 

value corrected for BPF, age, gender and band volume). 

 
Lesion density and proximity to brain surfaces 

 

The density of WM lesions per band is shown in Figure 3. In the supra-tentorial 

compartment, lesion density was highest around the ventricles and decreased towards 

central WM (5.80%±0.70 vs 2.50%±0.40, p=0.005;  p value corrected for BPF, age, 

gender and band volume). In the cerebellum and brainstem there was no association 

between proximity to the fourth ventricle and WM lesion density.  
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Discussion 

 

We found that MS-associated reductions in supra-tentorial and cerebellar NAWM, 

brainstem NAT, and cortical and deep GM MTR are related to distance from the inner 

(ventricular) and outer (pial) surfaces throughout the brain.  In contrast, for WM lesions 

a relationship with distance from the brain surface was only seen around the lateral 

ventricles. This suggests that proximity to the surface of the brain per se may be 

relevant to the pathogenesis of NAWM and GM abnormalities, but is less important for 

the accrual of WM lesions, and so raises the possibility that partly independent 

processes may underlie them. 

 

We have previously found associations between cortical GM MTR and distance from 

the outer surface of the brain4, and NAWM MTR and proximity to the lateral ventricles.5 

The present results confirm these findings, and also show that these superficial 

gradients in MTR abnormalities are consistent throughout the brain. In agreement with 

previous lesion probability studies,23 we found that WM lesion density was highest 

around the lateral ventricles. However, no gradient in WM lesion density was seen 

with distance from the fourth ventricle in the brainstem or cerebellum, which clearly 

contrasts with the MTR findings in NAWM and GM in these regions. While it is possible 

that the same factors underlie the gradients in MTR abnormalities and the distribution 

of WM lesions, the discrepancy between them does raise the distinct possibility that 

different processes are at work. 

 

WM lesions mostly form around veins,7-8 and our results would appear consistent with 

this. Around the lateral ventricles, where a gradient in lesion density was seen, veins 

drain towards the periventricular ependymal surface. In contrast, in the brainstem and 

cerebellum, where a gradient in lesion density was not seen, venous drainage is not 

so uniformly towards the fourth ventricle.24-25  

 

The consistency of superficial gradients in MTR abnormalities throughout brain GM 

and NAWM is difficult to explain based on the distribution of veins, or hypoxia, given 

substantial differences in vascular architecture and perfusion between brain regions.24-

26 A CSF-mediated factor perhaps offers a more straightforward explanation, being in 
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close proximity to both the inner and outer brain surfaces. However, while there is in 

vitro evidence that CSF from people with MS is both myelo- and neurotoxic,27,28 this 

has not been shown in vivo. Meningeal inflammation has been implicated in the 

pathogenesis of cortical GM lesions, and lesional and extra-lesional neuronal loss,11-

12 but ependymal changes in MS do not appear to be closely linked with underlying 

WM lesion formation1 and, to the best of our knowledge, no studies have looked for 

associations between ependymal abnormalities and axonal pathology in WM. 

 

Our study also confirms previous findings that have shown that - even in HC - MTR is 

not uniform throughout WM.29 In this study we found that MTR values in supratentorial 

WM were highest adjacent to the ventricles, declining with distance from them, and 

particularly next to the cortex. In WM MTR has previously been shown to be sensitive 

to both myelin and axonal densities30 and so the regional MTR patterns we have 

observed may stem from differences in myelin and axonal organisation. We are not 

aware of any histopathological studies that have specifically addressed this, and as 

such cannot speculate further. Practically, this finding highlights the need to take into 

account regional differences in MTR when evaluating the impact of disease processes 

on WM. 

 
 

While carefully designed, the methods used in this study still have limitations. To 

reduce the potential for partial volume effects a GIF-based segmentation approach 

was used, which explicitly models partial volumes. Moreover, the bands nearest to the 

inner and outer brain surfaces were excluded from the analyses, so further reducing 

the possible impact of CSF contamination. While all registrations were carefully 

checked, brain atrophy could still have subtly affected the relative positioning of bands 

between subjects, and so reduced sensitivity to MTR gradients. However, the Laplace-

based approach used in this study will have partially accounted for the differences in 

brain size as the number of bands extracted for each subject was the same, and so 

while in people with greater atrophy each band will be narrower, their position relative 

to the surface of the brain should be maintained.  As in our previous study on NAWM,5 

we dilated WM lesion masks by 2mm to allow for perilesional disease effects.31 This, 

together with the observed differences in the distribution of NAWM MTR abnormalities 

and WM lesions makes unlikely that contamination of NAWM by lesions will have 
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significantly influenced the results. However, while most WM lesions are seen on 

PD/T2-weighted scans, few GM lesions are detected using currently available MRI 

techniques,32 and as such it is not possible for us to determine if the abnormal MTR 

gradient observed in GM is due to lesional or extra-lesional pathology. 

Histopathological studies of the cortex1 and in deep GM3 suggests that it may be due 

to both. While this does not negate the main findings of our work, it is an area that 

could usefully be clarified in subsequent studies. 

 

In conclusion, abnormalities in NAWM and GM (as assessed using MTR) are both 

associated with proximity to the inner and outer surfaces of the brain, raising the 

possibility of a common pathogenic factor underlying them. In contrast, while WM 

lesions preferentially accrue around the lateral ventricles, their distribution elsewhere 

is not consistently related to distance from the surface of the brain, suggesting the 

possibility that different factors may promote their formation. 
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Figure legends  
 

Figure 1. Brain parenchyma segmentation in twelve bands based on the iterative 

application of the normalised central curve of the Laplace equation. Each band is 

represented by a different colour.  
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Figure 2. Supra-tentorial and cerebellar normal appearing white matter (NAWM) and 

brainstem NA tissue (NAT) data. MTR values for MS subjects (red dots) and controls 

(blue dots). Error bars represent 2 x standard errors (SE). Bands 1-3 represent the 

periventricular region (with band 1 nearest to the ventricular surface), bands 4-7 the 

central region and bands 8-10 the subpial region (with band 10 nearest to the pial 

surface). 
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Figure 3. Grey matter (GM) data MTR values for MS subjects (red dots) and controls 

(blue dots). Error bars represent 2 x standard errors (SE). Bands 1-3 represent the 

periventricular region (with band 1 nearest to the ventricular surface), bands 4-7 the 

central region and bands 8-10 the subpial region (with band 10 nearest to the pial 

surface). 

 

 
 

  



 

22 

 
Figure 4. Percentage of lesioned white matter (WM) for each band in the supra-

tentorial, cerebellar and brainstem white matter in the MS group. Error bars represent 

2 x standard errors (SE). Band 1 is the nearest to the ventricular surface, band 10 is 

the nearest to the pial surface. 
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Table 1. MRI measures in the periventricular and central regions. P-values are 

computed using a general linear model including BPF, age, gender and band volume 

as covariates. Those values surviving a threshold of 0.05 FDR-corrected for multiple 

comparisons are marked in bold font and underlined. Legend:  NAWM: normal 

appearing white matter, NAT: normal appearing tissue. GM: grey matter, MS: multiple 

sclerosis subjects, HC: healthy controls, MTR: magnetisation transfer ratio.    
 

Region Measure 
MTR  

HC MS Difference 

Supra-
tentorial 
NAWM 

Band 1 40.26±0.17 37.20±0.32 p<0.001 

Band 3 40.36±0.16 38.85±0.17 p<0.001 

Band 4 40.35±0.15 39.16±0.15 p<0.001 

Band 7 40.20±0.16 39.39±0.20 p=0.001 

Periventricular 
gradient  0.05±0.16 0.85±0.17 p=0.003 

Central 
gradient 0.00±0.08 -0.02±0.09 p=0.820 

Cerebellar 
NAWM 

Band 1 38.29±0.26 37.11±0.19 p=0.008 

Band 3 38.49±0.22 37.77±0.14 p=0.012 

Band 4 39.03±0.20 38.65±0.16 p=0.210 

Band 7 38.93±0.20 38.53±0.15 p=0.025 

Periventricular 
gradient  0.10±0.04 0.33±0.05 p=0.012 

Central 
gradient -0.03±0.05 -0.03±0.06 p=0.800 
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Brainstem 
NAT 

Band 1 37.19±0.21 36.36±0.20 p=0.010 

Band 3 37.87±0.20 37.58±0.14 p=0.285 

Band 4 38.56±0.20 38.28±0.13 p=0.310 

Band 7 39.13±0.18 38.73±0.13 p=0.138 

Periventricular 
gradient   0.34±0.05 0.61±0.06 p=0.015 

Central 
gradient 0.19±0.02 0.15±0.02 p=0.190 

Deep GM 

Band 1 34.10±0.15 33.07±0.14 p=0.005 

Band 3 34.60±0.15 34.08±0.15 p=0.012 

Band 4 34.43±0.14 39.16±0.15 p=0.020 

Band 7 33.73±0.16 33.34±0.11 p=0.050 

Periventricular 
gradient   0.25±0.05 0.50±0.06 p=0.025 

Central 
gradient  0.00±0.10 0.08±0.08 p=0.635 
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Table 2. MRI measures in the subpial regions. P-values are computed using a general 

linear model including BPF, age, gender and band volume as covariates. Those values 

surviving a threshold of 0.05 FDR-corrected for multiple comparisons are marked in 

bold font and underlined. Legend:  NAWM: normal appearing white matter, NAT: 

normal appearing tissue, GM: grey matter, MS: multiple sclerosis subjects, HC: 

healthy controls, MTR: magnetisation transfer ratio.    
 

Region Measure 
MTR  

HC MS Differences 

Brainstem 
NAT 

Band 8 39.35±0.17 38.86±0.13 p=0.049 

Band 10 39.14±0.14 38.38±0.14 p=0.010 

Subpial gradient   -0.10±0.05 -0.24±0.02 p=0.015 

Cortical GM 

Band 8 34.07±0.16 33.76±0.12 p=0.158 

Band 10 34.03±0.16 33.33±0.12 p=0.020 

Subpial gradient   -0.01±0.02 -0.14±0.02 p=0.020 
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Supplementary Table 1. Average volume in cubic millimiters for each band. Legend: 

MS: multiple sclerosis, HC: Healthy controls  

 

 

Band N. HC MS 

1 17845±352 17421±382 

2 22133±513 20680±324 

3 25641±586 27534±439 

4 34004±690 30740±352 

5 41889±817 37705±534 

6 51937±993 46662±656 

7 65736±1259 59189±820 

8 86894±1647 78564±1050 

9 124007±2211 112559±1428 

10 199003±3296 180509±2250 
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