40 research outputs found

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Characterizing Complex Networks Using Entropy-Degree Diagrams: Unveiling Changes in Functional Brain Connectivity Induced by Ayahuasca

    Get PDF
    With the aim of further advancing the understanding of the human brain’s functional connectivity, we propose a network metric which we term the geodesic entropy. This metric quantifies the Shannon entropy of the distance distribution to a specific node from all other nodes. It allows to characterize the influence exerted on a specific node considering statistics of the overall network structure. The measurement and characterization of this structural information has the potential to greatly improve our understanding of sustained activity and other emergent behaviors in networks. We apply this method to study how the psychedelic infusion Ayahuasca affects the functional connectivity of the human brain in resting state. We show that the geodesic entropy is able to differentiate functional networks of the human brain associated with two different states of consciousness in the awaking resting state: (i) the ordinary state and (ii) a state altered by ingestion of the Ayahuasca. The functional brain networks from subjects in the altered state have, on average, a larger geodesic entropy compared to the ordinary state. Finally, we discuss why the geodesic entropy may bring even further valuable insights into the study of the human brain and other empirical networks

    The evolutionary origins of Lévy walk foraging.

    No full text
    We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher's information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies-and hence the selection pressure for the relevant adaptations-are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies-performing as effectively as the optimal one-can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks

    Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus from India

    No full text
    Background: This post hoc analysis evaluated the efficacy and safety of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus (T2DM) from India. Methods: Changes from baseline in HbA1c, fasting plasma glucose (FPG), body weight, and blood pressure (BP) with canagliflozin 100 and 300 mg were evaluated in a subgroup of patients from India (n = 124) from 4 randomized, double-blind, placebo- and active-controlled, Phase 3 studies (N = 2313; Population 1). Safety was assessed based on adverse event (AE) reports in these patients and in a broader subgroup of patients from India (n = 1038) from 8 randomized, double-blind, placebo- and active-controlled, Phase 3 studies (N = 9439; Population 2). Results: Reductions in HbA1cwith canagliflozin 100 and 300 mg were −0.74% and −0.88%, respectively, in patients from India, and −0.81% and −1.00%, respectively, in the 4 pooled Phase 3 studies. In the Indian subgroup, both canagliflozin doses provided reductions in FPG, body weight, and BP that were consistent with findings in the overall population. The incidence of overall AEs in patients from India was generally similar with canagliflozin 100 and 300 mg and noncanagliflozin. The AE profile in patients from India was generally similar to the overall population, with higher rates of genital mycotic infections and osmotic diuresis–related and volume depletion–related AEs with canagliflozin versus noncanagliflozin. Conclusion: Canagliflozin provided glycemic control, body weight reduction, and was generally well tolerated in patients with T2DM from India

    Output distribution of step lengths for a <i>μ</i> = 2.0 Lévy searcher in a <i>super-dense</i> landscape.

    No full text
    <p>In the simulations, <i>l</i><sub><i>t</i></sub> = 2.5 with <i>N</i><sub><i>t</i></sub> = 50000 targets homogeneously placed. The distribution takes into account the first 10<sup>4</sup> search steps, including non-truncated moves that end up without detecting a target and also a relatively large number of truncated steps due to targets encounters. Numerical simulation data are represented by circles. Dashed and dotted lines are, respectively, best fits to Brownian-like exponential and truncated power-law pdfs. The inset details the large-steps regime. Statistical data inference (MLE and AIC methods) indicates that the output distribution of step lengths in the super-dense regime is not properly described by a superdiffusive power-law (Lévy-like) pdf. Instead, it shows the signature of a Brownian motion.</p

    Heterogeneous search landscapes with representative trajectories of different strategies.

    No full text
    <p>Fragmented search landscapes containing <i>N</i><sub><i>t</i></sub> = 10<sup>4</sup> targets placed in <i>N</i><sub><i>p</i></sub> = 10 heterogeneous patches (gray regions) with: (A) same average distance between inner targets, , and radii uniformly distributed in the range 0.03<i>M</i> ≤ <i>R</i><sup>(<i>p</i>)</sup> ≤ 0.3<i>M</i>, <i>M</i> = 10<sup>4</sup>; (B) same radius, <i>R</i><sup>(<i>p</i>)</sup> = 0.1<i>M</i>, and uniformly distributed in the range ; and (C) distinct sizes uniformly distributed in the range 0.03<i>M</i> ≤ <i>R</i><sup>(<i>p</i>)</sup> ≤ 0.3<i>M</i>, but fixed number (10<sup>3</sup>) of inner targets per patch, so that . The darker the patch, the higher its homogeneous density of inner targets. We also show typical paths of a searcher with power-law (Lévy-like) distributions of step lengths displaying different degrees of diffusivity: nearly ballistic (<i>μ</i> = 1.1), superdiffusive (<i>μ</i> = 2.0), and Brownian (<i>μ</i> = 3.0). In this illustrative example the search ends upon the finding of only 10 targets.</p
    corecore