102 research outputs found
Neutrino initiated cascades at mid and high altitudes in the atmosphere
High energy neutrinos play a very important role for the understanding of the
origin and propagation of ultra high energy cosmic rays (UHECR). They can be
produced as a consequence of the hadronic interactions suffered by the cosmic
rays in the acceleration regions, as by products of the propagation of the
UHECR in the radiation background and as a main product of the decay of super
heavy relic particles. A new era of very large exposure space observatories, of
which the JEM-EUSO mission is a prime example, is on the horizon which opens
the possibility of neutrino detection in the highest energy region of the
spectrum. In the present work we use a combination of the PYTHIA interaction
code with the CONEX shower simulation package in order to produce fast
one-dimensional simulations of neutrino initiated showers in air. We make a
detail study of the structure of the corresponding longitudinal profiles, but
focus our physical analysis mainly on the development of showers at mid and
high altitudes, where they can be an interesting target for space fluorescence
observatories.Comment: To appear in Astroparticle Physic
Prospects for observations of high-energy cosmic tau neutrinos
We study prospects for the observations of high-energy cosmic tau neutrinos
(E \geq 10^6 GeV) originating from proton acceleration in the cores of active
galactic nuclei. We consider the possibility that vacuum flavor neutrino
oscillations induce a tau to muon neutrino flux ratio greatly exceeding the
rather small value expected from intrinsic production. The criterias and event
rates for under water/ice light Cerenkov neutrino telescopes are given by
considering the possible detection of downgoing high-energy cosmic tau
neutrinos through characteristic double shower events.Comment: 10 pages, Revtex, 3 figures included with eps
Measuring the prompt atmospheric neutrino flux with down-going muons in neutrino telescopes
In the TeV energy region and above, the uncertainty in the level of prompt
atmospheric neutrinos would limit the search for diffuse astrophysical
neutrinos. We suggest that neutrino telescopes may provide an empirical
determination of the flux of prompt atmospheric electron and muon neutrinos by
measuring the flux of prompt down-going muons. Our suggestion is based on the
consideration that prompt neutrino and prompt muon fluxes at sea level are
almost identical.Comment: 4 pages, 3 figure
Simultaneous NICER and NuSTAR Observations of the Ultracompact X-Ray Binary 4U 1543-624
We present the first joint NuSTAR and NICER observations of the ultracompact X-ray binary (UCXB) 4U 1543−624 obtained in 2020 April. The source was at a luminosity of L0.5−50 keV = 4.9(D/7 kpc)2 × 1036 erg s−1 and showed evidence of reflected emission in the form of an O viii line, Fe K line, and Compton hump within the spectrum. We used a full reflection model, known as xillverCO, that is tailored for the atypical abundances found in UCXBs, to account for the reflected emission. We tested the emission radii of the O and Fe line components and conclude that they originate from a common disk radius in the innermost region of the accretion disk (Rin ≤ 1.07 RISCO). Assuming that the compact accretor is a neutron star (NS) and the position of the inner disk is the Alfvén radius, we placed an upper limit on the magnetic field strength to be B ≤ 0.7(D/7 kpc) × 108 G at the poles. Given the lack of pulsations detected and position of Rin, it was likely that a boundary layer region had formed between the NS surface and inner edge of the accretion disk with an extent of 1.2 km. This implies a maximum radius of the neutron star accretor of RNS ≤ 12.1 km when assuming a canonical NS mass of 1.4 M⊙
Dynamical parton distributions of the nucleon and very small-x physics
Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and
high-E_{T} jet production we determine the dynamical parton distributions of
the nucleon generated radiatively from valence-like positive input
distributions at optimally chosen low resolution scales. These are compared
with `standard' distributions generated from positive input distributions at
some fixed and higher resolution scale. It is shown that up to the next to
leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper,
the uncertainties of the dynamical distributions are, as expected, smaller than
those of their standard counterparts. This holds true in particular in the
presently unexplored extremely small-x region relevant for evaluating ultrahigh
energy cross sections in astrophysical applications. It is noted that our new
dynamical distributions are compatible, within the presently determined
uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.
Tau Neutrinos Underground: Signals of Oscillations with Extragalactic Neutrinos
The appearance of high energy tau neutrinos due to
oscillations of extragalactic neutrinos can be observed by measuring the
neutrino induced upward hadronic and electromagnetic showers and upward muons.
We evaluate quantitatively the tau neutrino regeneration in the Earth for a
variety of extragalactic neutrino fluxes. Charged-current interactions of the
upward tau neutrinos below and in the detector, and the subsequent tau decay
create muons or hadronic and electromagnetic showers. The background for these
events are muon neutrino and electron neutrino charged-current and
neutral-current interactions, where in addition to extragalactic neutrinos, we
consider atmospheric neutrinos. We find significant signal to background ratios
for the hadronic/electromagnetic showers with energies above 10 TeV to 100 TeV
initiated by the extragalactic neutrinos. We show that the tau neutrinos from
point sources also have the potential for discovery above a 1 TeV threshold. A
kilometer-size neutrino telescope has a very good chance of detecting the
appearance of tau neutrinos when both muon and hadronic/electromagnetic showers
are detected.Comment: section added and two new figs; accepted for publication in Physical
Review
Planck scale effects in neutrino physics
We study the phenomenology and cosmology of the Majoron (flavon) models of
three active and one inert neutrino paying special attention to the possible
(almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton
charge. Using Planck scale physics effects which provide the breaking of the
lepton charge, we show how in this picture one can incorporate the solutions to
some of the central issues in neutrino physics such as the solar and
atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These
gravitational effects induce tiny Majorana mass terms for neutrinos and
considerable masses for flavons. The cosmological demand for the sufficiently
fast decay of flavons implies a lower limit on the electron neutrino mass in
the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex,
IC/92/196, SISSA-140/92/EP, LMU-09/9
Relic Neutrino Absorption Spectroscopy
Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang
relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption
dips in the neutrino flux to be observed at Earth. The high-energy edges of
these dips are fixed, via the resonance energies, by the neutrino masses alone.
Their depths are determined by the cosmic neutrino background density, by the
cosmological parameters determining the expansion rate of the universe, and by
the large redshift history of the cosmic neutrino sources. We investigate the
possibility of determining the existence of the cosmic neutrino background
within the next decade from a measurement of these absorption dips in the
neutrino flux. As a by-product, we study the prospects to infer the absolute
neutrino mass scale. We find that, with the presently planned neutrino
detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant
energy regime above 10^{21} eV, relic neutrino absorption spectroscopy becomes
a realistic possibility. It requires, however, the existence of extremely
powerful neutrino sources, which should be opaque to nucleons and high-energy
photons to evade present constraints. Furthermore, the neutrino mass spectrum
must be quasi-degenerate to optimize the dip, which implies m_{nu} >~ 0.1 eV
for the lightest neutrino. With a second generation of neutrino detectors,
these demanding requirements can be relaxed considerably.Comment: 19 pages, 26 figures, REVTeX
Total photoproduction cross-section at very high energy
In this paper we apply to photoproduction total cross-section a model we have
proposed for purely hadronic processes and which is based on QCD mini-jets and
soft gluon re-summation. We compare the predictions of our model with the HERA
data as well as with other models. For cosmic rays, our model predicts
substantially higher cross-sections at TeV energies than models based on
factorization but lower than models based on mini-jets alone, without soft
gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes
concern added references, clarifications of the Soft Gluon Resummation method
used in the paper, and other changes requested by the Journal referee which
do not change the results of the original versio
- …