8,787 research outputs found

    The Ascending Double-Cone: A Closer Look at a Familiar Demonstration

    Get PDF
    The double-cone ascending an inclined V-rail is a common exhibit used for demonstrating concepts related to center-of-mass in introductory physics courses. While the conceptual explanation is well-known--the widening of the ramp allows the center of mass of the cone to drop, overbalancing the increase in altitude due to the inclination of the ramp--there remains rich physical content waiting to be extracted through deeper exploration. Such an investigations seems to be absent from the literature. This article seeks to remedy the omission.Comment: LaTeX, 16 pages, 18 eps figure

    Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography Organ-based Tube Current Modulation Technique

    Get PDF
    Purpose This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol

    Three-dimensional unstructured grid generation via incremental insertion and local optimization

    Get PDF
    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details

    Growth to early adulthood following extremely preterm birth: the EPICure study.

    Get PDF
    OBJECTIVE: To investigate growth trajectories from age 2.5 to 19 years in individuals born before 26 weeks of gestation (extremely preterm; EP) compared with term-born controls. METHODS: Multilevel modelling of growth data from the EPICure study, a prospective 1995 birth cohort of 315 EP participants born in the UK and Ireland and 160 term-born controls recruited at school age. Height, weight, head circumference and body mass index (BMI) z-scores were derived from UK standards at ages 2.5, 6, 11 and 19 years. RESULTS: 129 (42%) EP children were assessed at 19 years. EP individuals were on average 4.0 cm shorter and 6.8 kg lighter with a 1.5 cm smaller head circumference relative to controls at 19 years. Relative to controls, EP participants grew faster in weight by 0.06 SD per year (95% CI 0.05 to 0.07), in head circumference by 0.04 SD (95% CI 0.03 to 0.05), but with no catch-up in height. For the EP group, because of weight catch-up between 6 and 19 years, BMI was significantly elevated at 19 years to +0.32 SD; 23.4% had BMI >25 kg/m2 and 6.3% >30 kg/m2 but these proportions were similar to those in control subjects. EP and control participants showed similar pubertal development in early adolescence, which was not associated with height at 19 years in either study group. Growth through childhood was related to birth characteristics and to neonatal feeding practices. CONCLUSIONS: EP participants remained shorter and lighter and had smaller head circumferences than reference data or controls in adulthood but had elevated BMI

    The subarcsecond mid-infrared view of local active galactic nuclei: II. The mid-infrared--X-ray correlation

    Full text link
    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.Comment: Accepted for publication in MNRAS, 40 pages, 25 figure
    • 

    corecore