7 research outputs found

    Sound and Posture: an Overview of Recent Findings

    No full text
    International audienceEven if it has been neglected for a long time, the sound and posture domain seemed to arouse an increasing interest in recent years. In the present position paper, we propose to present an overview of our recent findings on this field and to put them in perspective with the literature. We will bring evidence to support the view that spatial cues provided by auditory information can be integrated by human for a better postural control

    The influence of horizontally rotating sound on standing balance

    No full text
    International audiencePostural control is known to be the result of the integration and processing of various sensory inputs by the central nervous system. Among the various afferent inputs, the role of auditory information in postural regulation has been addressed in relatively few studies, which led to conflicting results. The purpose of the present study was to investigate the influence of a rotating auditory stimulus, delivered by an immersive 3D sound spatialization system, on the standing posture of young subjects. The postural sway of 20 upright, blindfolded subjects was recorded using a force platform. Use of various sound source rotation velocities followed by sudden immobilization of the sound was compared with two control conditions: no sound and a stationary sound source. The experiment showed that subjects reduced their body sway amplitude and velocity in the presence of rotating sound compared with the control conditions. The faster the sound source was rotating, the greater the reduction in subject body sway.Moreover, disruption of subject postural regulation was observed as soon as the sound source was immobilized. These results suggest that auditory information cannot be neglected in postural control, and that it acts as additional information influencing postural regulation

    Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map?

    Get PDF
    International audienceIt has long been suggested that sound plays a role in the postural control process. Few studies however have explored sound and posture interactions. The present paper focuses on the specific impact of audition on posture, seeking to determine the attributes of sound that may be useful for postural purposes. We investigated the postural sway of young, healthy blindfolded subjects in two experiments involving different static auditory environments. In the first experiment, we compared effect on sway in a simple environment built from three static sound sources in two different rooms: a normal vs. an anechoic room. In the second experiment, the same auditory environment was enriched in various ways, including the ambisonics synthesis of a immersive environment, and subjects stood on two different surfaces: a foam vs. a normal surface. The results of both experiments suggest that the spatial cues provided by sound can be used to improve postural stability. The richer the auditory environment, the better this stabilization. We interpret these results by invoking the " spatial hearing map " theory: listeners build their own mental representation of their surrounding environment, which provides them with spatial landmarks that help them to better stabilize

    Sound and posture : the role of the spatial auditory perception in maintaining balance

    No full text
    Le maintien de la stabilité posturale est généralement décrit comme le résultat de l’intégration de plusieurs modalités sensorielles : vision, proprioception, tactile plantaire et système vestibulaire. Bien qu’étant une source riche d’informations spatiales, l’audition a été très peut étudiée dans ce cadre. Dans cette thèse, nous nous sommes intéressés à l’influence spécifique du son sur la posture.La première partie de ces travaux concerne la mise en place et la caractérisation perceptive d’un système de spatialisation ambisonique d’ordre 5. Ce système permet de générer et de déplacer des sons dans tout l’espace 3D entourant l’auditeur, ainsi que de synthétiser des espaces sonores immersifs et réalistes.Ensuite, ce système a été utilisé comme un outil pour la génération de stimuli adaptés à l’étude de l’influence du son sur la posture. Ainsi, la posture debout statique de sujets jeunes et en bonne santé a été étudiée dans un ensemble de cinq expériences posturales. Les résultats de ces différentes études montrent que l’information auditive spatiale peut être intégrée dans le système de régulation posturale, et permettre aux sujets d’atteindre une meilleure stabilité posturale.Deux pistes sont évoquées pour interpréter cette stabilisation : d’un côté, l’utilisation des indices acoustiques pour construire une carte spatiale de l’espace environnant, représentation par rapport à laquelle les sujets peuvent se stabiliser ; de l’autre, des phénomènes d’intégration multi-sensorielle, où la modalité auditive permettrait de potentialiser l’intégration des différentes informations fournies par les autres modalités impliquées dans le contrôle postural.Postural control is known to be the result of the integration by the central nervous system of several sensory modalities. In the literature, visual, proprioceptive, plantar touch and vestibular inputs are generally mentioned, and the role of audition is often neglected, even though sound is a rich and broad source of information on the whole surroundind 3D space. In the frame of this PhD, we focused on the specific role of sound on posture. The first part of this work is related to the design, the set-up and the perceptual evaluation of a fifth order ambisonics sound spatialization system. This system makes it possible to generate and move sound sources in the 3D space surrounding the listener and also to synthesize immersive and realistic sound environments. Then, this sound spatialization system was used as a tool to generate sound stimuli used in five different postural tests. In these tests, we studied the static upright stance of young and healthy subjects. The results of these studies show that the spatial auditory information can be integrated in the postural control system, allowing the subjects to reach a better stability.Two complementary trails are proposed to explain these stabilizing effects. Firstly, the spatial acoustic cues can contribute to the building of a mental representation of the surrounding environment; given this representation, the subjects could improve their stability. Secondly, we introduce multisensory integration phenomena: the auditory component could facilitate the integration of the other modalities implied in the postural control system

    Perception of Surrounding Sound Source Trajectories in the Horizontal Plane: A Comparison of VBAP and Basic-Decoded HOA

    No full text
    International audienceDespite the fundamental role played by sound in multiple virtual reality contexts, few studies have explored the perception of virtual sound source motion in the acoustic space. The goal of this study was to compare the localization of virtual moving sound sources rendered with two different spatialization techniques: Vector BaseAmplitude Panning (VBAP) and fifth-order Ambisonics (HOA), both implemented in a soundproofed room and in their most basic form (basic decoding of HOA, VBAP without spread parameter). The perception of virtual sound trajectories surrounding untrained subjects (n=23) was evaluated using a new method based on a drawing-augmented multiple-choice questionnaire. In the spherical loudspeaker array used in this study, VBAP proved to be a robust spatialization technique for sound trajectory rendering in terms of trajectory recognition and height perception. In basic-decoded HOA, subjects exhibited far more disparate trajectory recognition and height perception performances but performed better in perceiving sound source movement homogeneity
    corecore