39 research outputs found

    NADPH Oxidase 5 Is a Pro‐Contractile Nox Isoform and a Point of Cross‐Talk for Calcium and Redox Signaling‐Implications in Vascular Function

    Get PDF
    Background NADPH Oxidase 5 (Nox5) is a calcium‐sensitive superoxide‐generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro‐contractile signaling and vascular function. Methods and Results Transgenic mice expressing human Nox5 in a vascular smooth muscle cell–specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5‐expressing mice, agonist‐induced vasoconstriction was exaggerated and endothelium‐dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N‐acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro‐contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild‐type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions Nox5 is a pro‐contractile Nox isoform important in redox‐sensitive contraction. This involves calcium‐calmodulin and endoplasmic reticulum–regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro‐contractile molecular machinery in vascular smooth muscle cells

    NADPH oxidase 5 is a pro‐contractile Nox isoform and a point of cross‐talk for calcium and redox signaling‐implications in vascular function

    Get PDF
    Background: NADPH Oxidase 5 (Nox5) is a calcium‐sensitive superoxide‐generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro‐contractile signaling and vascular function. Methods and Results: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell–specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5‐expressing mice, agonist‐induced vasoconstriction was exaggerated and endothelium‐dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N‐acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro‐contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild‐type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions: Nox5 is a pro‐contractile Nox isoform important in redox‐sensitive contraction. This involves calcium‐calmodulin and endoplasmic reticulum–regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro‐contractile molecular machinery in vascular smooth muscle cells

    Chronic exposure to warm temperature causes low sperm abundance and quality in Drosophila melanogaster

    No full text
    Abstract Temperature influences male fertility across organisms; however, how suboptimal temperatures affect adult spermatogenesis remains understudied. In a recent study on Drosophila melanogaster oogenesis, we observed a drastic reduction in the fertility of adult males exposed to warm temperature (29 °C). Here, we show that males become infertile at 29 °C because of low sperm abundance and quality. The low sperm abundance at 29 °C does not stem from reduced germline stem cell or spermatid numbers, as those numbers remain comparable between 29 °C and control 25 °C. Notably, males at cold 18 °C and 29 °C had similarly increased frequencies of spermatid elongation and individualization defects which, considering the high sperm abundance and male fertility measured at 18 °C, indicate that spermatogenesis has a high tolerance for elongation and individualization defects. Interestingly, the abundance of sperm at 29 °C decreases abruptly and with no evidence of apoptosis as they transition into the seminal vesicle near the end of spermatogenesis, pointing to sperm elimination through an unknown mechanism. Finally, sperm from males at 29 °C fertilize eggs less efficiently and do not support embryos past the first stage of embryogenesis, indicating that poor sperm quality is an additional cause of male infertility at 29 °C

    Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase

    Get PDF
    Abstract Background NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. Results We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H2O2. Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H2O2 production is considerably diminished in A. aegypti cells. Conclusions Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H2O2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many species, NOX4-art was lost in a number of arthropod lineages

    ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    Get PDF
    Submitted by sandra infurna ([email protected]) on 2016-03-03T12:54:57Z No. of bitstreams: 1 flavio_lara_etal_IOC_2015.PDF: 6748083 bytes, checksum: 0febe6bad842ab7fb38d1aad3c3aad7e (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-03-03T13:21:47Z (GMT) No. of bitstreams: 1 flavio_lara_etal_IOC_2015.PDF: 6748083 bytes, checksum: 0febe6bad842ab7fb38d1aad3c3aad7e (MD5)Made available in DSpace on 2016-03-03T13:21:47Z (GMT). No. of bitstreams: 1 flavio_lara_etal_IOC_2015.PDF: 6748083 bytes, checksum: 0febe6bad842ab7fb38d1aad3c3aad7e (MD5) Previous issue date: 2015Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio Grande do Sul. Faculdade de VeterinĂĄria. Centro de Biotecnologia. Porto Alegre, RS, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquĂ­mica MĂ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Microbiologia Celular. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquĂ­mica MĂ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Estadual Paulista. Faculdade de CiĂȘncias AgrĂĄrias e VeterinĂĄrias. Departamento de Patologia VeterinĂĄria. Jaboticabal, SP, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquĂ­mica MĂ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil / Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular–INCTEM. Rio de Janeiro, RJ, Brasil.University of Texas at El Paso. The Border Biomedical Research Center. El Paso, Texas, USA.Universidade Federal do Rio Grande do Sul. Faculdade de VeterinĂĄria. Centro de Biotecnologia. Porto Alegre, RS, Brasil / Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular–INCTEM. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de BioquĂ­mica MĂ©dica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil / Instituto Nacional de CiĂȘncia e Tecnologia em Entomologia Molecular–INCTEM. Rio de Janeiro, RJ, Brasil.In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a wellknown inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new molecular mechanism of resistance to pesticides

    Schematic model of physiological consequences of blocked Hz formation in triatomine midgut.

    No full text
    <p>In the presence of QND, heme derived from blood meal forms stable complexes with this drug, impairing Hz formation in the midgut lumen. Non-crystallized heme levels build up in the midgut causing cytotoxic effects to <i>T</i>. <i>cruzi</i> trypomastigotes. Excessive heme is transported to hemolymph through the midgut cells by hemoxisomes/residual bodies, causing redox imbalance and autophagy in the midgut. Heme accumulates in the hemolymph, increasing RHBP production, as a compensatory defense against "free" heme. However, this mechanism is overwhelmed, as the levels of urate drop. Redox imbalance has a direct effect on oogenesis, reducing egg production.</p
    corecore