90 research outputs found

    Systèmes multi-robots aériens : architecture pour la planification, la supervision et la coordination

    Get PDF
    Les robots aériens (UAV, pour Unmanned Aerial Vehicles) font l'objet d'un intérêt croissant dans la communauté robotique. Ils offrent un large champ d'applications, mais introduisent des modalités d'opération particulières (contraintes logistiques, capacités de déplacement...). Dans ce travail, nous nous intéressons aux systèmes multi-UAV : l'opération conjointe d'un certain nombre d'UAV nécessite de bâtir une architecture multi-robot qui puisse prendre en compte le potentiel et les contraintes des UAV. Dans ce but, nous introduisons une notion de "degré d'autonomie décisionnelle", qui reflète le niveau de délégation de capacités autonomes aux robots par un opérateur du système. Un exécutif générique est proposé pour interfacer, au niveau de chacun des UAV du système, les différentes configurations possibles de délégation de l'autonomie décisionnelle : celui-ci reçoit et traite des plans de tâches produits soit par un centre de contrôle en charge de tous les UAVs (bas degrés d'autonomie), soit par une couche délibérative individuelle, au niveau de chacun des UAV (hauts degrés d'autonomie). Dans ce dernier cas, nous proposons une couche délibérative permettant aux UAVs de planifier et coordonner leurs tâches, afin d'opérer conjointement dans le cadre d'une mission donnée. Cette couche délibérative regroupe un couple planificateur symbolique / raffineurs géométriques, ainsi qu'un gestionnaire d'interactions à base de modèles. Une partie des développements a été testée avec succès dans le cadre du projet européen Comets, avec 3 UAV hétérogènes (deux hélicoptères et un dirigeable). Les autres développements ont donné lieu à des tests en simulation

    Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae

    Get PDF
    Carbon nanotubes (CNTs) tend to readily agglomerate and settle down in water, while the adsorption of compounds present in natural aquatic media could enhance their dispersion and stabilization in the water column. We designed a new exposure protocol to compare the biological responses of Xenopus laevis larvae exposed in semi-static conditions to size-reduced agglomerates of multi-walled carbon nanotubes (MWCNTs) in suspension in the water column and/or to larger agglomerates. Suspensions were prepared using a combination of a non-covalent functionalization with a non-toxic polymer (either carboxymethylcellulose, CMC, or gum arabic, GA) and mechanical dispersion methods (mainly ultrasonication). The ingestion of agglomerates which have settled down was incriminated in the disruption of the intestinal transit and the assimilation of nutrients, leading to acute and chronic toxicities at the highest tested concentrations. Rise in mortality, decrease in the growth rate and induction of genotoxicity from low concentrations (1 mg/L in the presence of CMC) were evidenced in presence of suspended MWCNTs in the water column. The biological responses seemed to be modulated when GA, a potential antioxidant, was used. We hypothesized that MWCNTs should interfere mainly at the surface of the gills, acting as a potential respiratory toxicant and generally inducing indirect effects

    New Concepts in the Evaluation of Biodegradation/Persistence of Chemical Substances Using a Microbial Inoculum

    Get PDF
    The European REACH Regulation (Registration, Evaluation, Authorization of CHemical substances) implies, among other things, the evaluation of the biodegradability of chemical substances produced by industry. A large set of test methods is available including detailed information on the appropriate conditions for testing. However, the inoculum used for these tests constitutes a “black box.” If biodegradation is achievable from the growth of a small group of specific microbial species with the substance as the only carbon source, the result of the test depends largely on the cell density of this group at “time zero.” If these species are relatively rare in an inoculum that is normally used, the likelihood of inoculating a test with sufficient specific cells becomes a matter of probability. Normally this probability increases with total cell density and with the diversity of species in the inoculum. Furthermore the history of the inoculum, e.g., a possible pre-exposure to the test substance or similar substances will have a significant influence on the probability. A high probability can be expected for substances that are widely used and regularly released into the environment, whereas a low probability can be expected for new xenobiotic substances that have not yet been released into the environment. Be that as it may, once the inoculum sample contains sufficient specific degraders, the performance of the biodegradation will follow a typical S shaped growth curve which depends on the specific growth rate under laboratory conditions, the so called F/M ratio (ratio between food and biomass) and the more or less toxic recalcitrant, but possible, metabolites. Normally regulators require the evaluation of the growth curve using a simple approach such as half-time. Unfortunately probability and biodegradation half-time are very often confused. As the half-time values reflect laboratory conditions which are quite different from environmental conditions (after a substance is released), these values should not be used to quantify and predict environmental behavior. The probability value could be of much greater benefit for predictions under realistic conditions. The main issue in the evaluation of probability is that the result is not based on a single inoculum from an environmental sample, but on a variety of samples. These samples can be representative of regional or local areas, climate regions, water types, and history, e.g., pristine or polluted. The above concept has provided us with a new approach, namely “Probabio.” With this approach, persistence is not only regarded as a simple intrinsic property of a substance, but also as the capability of various environmental samples to degrade a substance under realistic exposure conditions and F/M ratio

    User-Centered Design

    Get PDF
    The successful introduction and acceptance of novel technological tools are only possible if end users are completely integrated in the design process. However, obtaining such integration of end users is not obvious, as end‐user organizations often do not consider research toward new technological aids as their core business and are therefore reluctant to engage in these kinds of activities. This chapter explains how this problem was tackled in the ICARUS project, by carefully identifying and approaching the targeted user communities and by compiling user requirements. Resulting from these user requirements, system requirements and a system architecture for the ICARUS system were deduced. An important aspect of the user‐centered design approach is that it is an iterative methodology, based on multiple intermediate operational validations by end users of the developed tools, leading to a final validation according to user‐scripted validation scenarios

    International standardized procedures forin vivoevaluation of multi-walled carbon nanotube toxicity in water

    Get PDF
    The classical approach in ecotoxicological evaluation of chemical substances consists of conducting standardized bioassays on organism models. In this work, the potential impact of industrial multiwalled carbon nanotubes was investigated by ecotoxicological standardized procedures using aquatic organisms of different trophic levels, namely bacteria, green algae, invertebrates, fish, and amphibians. The results indicated (1) inhibition of growth in amphibians at 50 mg L¡1 and higher, and (2) no effects on daphnia and fish up to 100 mg L¡1. With the exception of algae (for which Fe deficiency is measured), it seems that the observed toxicity may be due to physiological effects in relation to the ingestion of carbon nanotubes not necessarily related to their intrinsic effects

    Alcoholysis of palm oil mid-fraction by lipase from Rhizopus rhizopodiformis

    Get PDF
    A mycelial lipase from Rhizopus rhizopodiformis was prepared in fragment form. The lipase was examined to catalyze the alcoholysis of palm oil mid-fraction (PMF) in organic solvents. High percentage conversions of PMF to alkyl esters were achieved when methanol or propanol was used as acyl acceptor. Of the two most prevalent fatty acids in PMF, palmitic acid seemed to be preferred over oleic acid in the formation of methyl and propyl esters. The optimal ratio of oil to methanol in the alcoholysis reaction is 1 to 2 moles. The lipase exhibited high alcoholysis activities in nonpolar solvents (log P>2), such as hexane, benzene, toluene, and heptane. The enzyme showed exceptionally high thermostability
    corecore