5 research outputs found

    Enhancing chemotherapy response through augmented synthetic lethality by co-targeting nucleotide excision repair and cell-cycle checkpoints

    No full text
    In response to DNA damage, a synthetic lethal relationship exists between the cell cycle checkpoint kinase MK2 and the tumor suppressor p53. Here, we describe the concept of augmented synthetic lethality (ASL): depletion of a third gene product enhances a pre-existing synthetic lethal combination. We show that loss of the DNA repair protein XPA markedly augments the synthetic lethality between MK2 and p53, enhancing anti-tumor responses alone and in combination with cisplatin chemotherapy. Delivery of siRNA-peptide nanoplexes co-targeting MK2 and XPA to pre-existing p53-deficient tumors in a highly aggressive, immunocompetent mouse model of lung adenocarcinoma improves long-term survival and cisplatin response beyond those of the synthetic lethal p53 mutant/MK2 combination alone. These findings establish a mechanism for co-targeting DNA damage-induced cell cycle checkpoints in combination with repair of cisplatin-DNA lesions in vivo using RNAi nanocarriers, and motivate further exploration of ASL as a generalized strategy to improve cancer treatment. Cell cycle checkpoint kinase, MK2, is in synthetic relationship with p53 in the DNA damage response to chemotherapeutic agents. Here, the authors report XPA as a third gene in which simultaneous targeting of MK2 and XPA further enhances sensitivity to cisplatin in p53-deficient tumours

    Estimation of tuberculosis incidence at subnational level using three methods to monitor progress towards ending TB in India, 2015–2020

    No full text
    Objectives We verified subnational (state/union territory (UT)/district) claims of achievements in reducing tuberculosis (TB) incidence in 2020 compared with 2015, in India.Design A community-based survey, analysis of programme data and anti-TB drug sales and utilisation data.Setting National TB Elimination Program and private TB treatment settings in 73 districts that had filed a claim to the Central TB Division of India for progress towards TB-free status.Participants Each district was divided into survey units (SU) and one village/ward was randomly selected from each SU. All household members in the selected village were interviewed. Sputum from participants with a history of anti-TB therapy (ATT), those currently experiencing chest symptoms or on ATT were tested using Xpert/Rif/TrueNat. The survey continued until 30 Mycobacterium tuberculosis cases were identified in a district.Outcome measures We calculated a direct estimate of TB incidence based on incident cases identified in the survey. We calculated an under-reporting factor by matching these cases within the TB notification system. The TB notification adjusted for this factor was the estimate by the indirect method. We also calculated TB incidence from drug sale data in the private sector and drug utilisation data in the public sector. We compared the three estimates of TB incidence in 2020 with TB incidence in 2015.Results The estimated direct incidence ranged from 19 (Purba Medinipur, West Bengal) to 1457 (Jaintia Hills, Meghalaya) per 100 000 population. Indirect estimates of incidence ranged between 19 (Diu, Dadra and Nagar Haveli) and 788 (Dumka, Jharkhand) per 100 000 population. The incidence using drug sale data ranged from 19 per 100 000 population in Diu, Dadra and Nagar Haveli to 651 per 100 000 population in Centenary, Maharashtra.Conclusion TB incidence in 1 state, 2 UTs and 35 districts had declined by at least 20% since 2015. Two districts in India were declared TB free in 2020
    corecore