6,716 research outputs found

    Experimental verification of the "rainbow" trapping effect in plasmonic graded gratings

    Full text link
    We report the first experimental observation of trapped rainbow1 in graded metallic gratings2-4, designed to validate theoretical predictions for this new class of plasmonic structures. One-dimensional tapered gratings were fabricated and their surface dispersion properties tailored by varying the grating period and depth, whose dimensions were confirmed by atomic force microscopy. Reduced group velocities and the plasmonic bandgap were observed. Direct measurements on graded grating structures show that light of different wavelengths in the 500-700nm region is "trapped" at different positions along the grating, consistent with computer simulations, thus verifying the "rainbow" trapping effect. The trapped rainbow effect offers exciting pathways for optical information storage and optical delays in photonic circuits at ambient temperature

    Frequency variations of gravity waves interacting with a time-varying tide

    Get PDF
    Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when a GW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal–GW interactions are more complicated than usually taken into account by GW parameterizations in global models

    Possible Way to Synthesize Superheavy Element Z=117

    Full text link
    Within the framework of the dinuclear system model, the production of superheavy element Z=117 in possible projectile-target combinations is analyzed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed in this letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n channels, and the system ^{51}V+^{244}Pu in 3n channel.Comment: 10 pages, 4 figures, 1 tabl

    Lattice Boltzmann study on Kelvin-Helmholtz instability: the roles of velocity and density gradients

    Full text link
    A two-dimensional lattice Boltzmann model with 19 discrete velocities for compressible Euler equations is proposed (D2V19-LBM). The fifth-order Weighted Essentially Non-Oscillatory (5th-WENO) finite difference scheme is employed to calculate the convection term of the lattice Boltzmann equation. The validity of the model is verified by comparing simulation results of the Sod shock tube with its corresponding analytical solutions. The velocity and density gradient effects on the Kelvin-Helmholtz instability (KHI) are investigated using the proposed model. Sharp density contours are obtained in our simulations. It is found that, the linear growth rate γ\gamma for the KHI decreases with increasing the width of velocity transition layer Dv{D_{v}} but increases with increasing the width of density transition layer Dρ{D_{\rho}}. After the initial transient period and before the vortex has been well formed, the linear growth rates, γv\gamma_v and γρ\gamma_{\rho}, vary with Dv{D_{v}} and Dρ{D_{\rho}} approximately in the following way, lnγv=abDv\ln\gamma_{v}=a-bD_{v} and γρ=c+elnDρ(Dρ<DρE)\gamma_{\rho}=c+e\ln D_{\rho} ({D_{\rho}}<{D_{\rho}^{E}}), where aa, bb, cc and ee are fitting parameters and DρE{D_{\rho}^{E}} is the effective interaction width of density transition layer. When Dρ>DρE{D_{\rho}}>{D_{\rho}^{E}} the linear growth rate γρ\gamma_{\rho} does not vary significantly any more. One can use the hybrid effects of velocity and density transition layers to stabilize the KHI. Our numerical simulation results are in general agreement with the analytical results [L. F. Wang, \emph{et al.}, Phys. Plasma \textbf{17}, 042103 (2010)].Comment: Accepted for publication in PR

    Lattice distortion and uniaxial magnetic anisotropy in single domain epitaxial (110) films of SrRuO3

    Get PDF
    The effects of epitaxial strain on the orthorhombic-to-triclinic lattice distortion and uniaxial magnetic anisotropy in single-domain SrRuO3 (110) films epitaxially grown on (001) SrTiO3 substrates were examined. The magnetic orientation of the film was found to be along or near the [010] direction, rotating towards the [110] perpendicular direction with decreasing temperature. The influence of the crystalline anisotropy in SrRuO3 on the uniaxial magnetic anisotropy was also examined

    Instability of the Fermi-liquid fixed point in an extended Kondo model

    Full text link
    We study an extended SU(N) single-impurity Kondo model in which the impurity spin is described by a combination of Abrikosov fermions and Schwinger bosons. Our aim is to describe both the quasiparticle-like excitations and the locally critical modes observed in various physical situations, including non-Fermi liquid (NFL) behavior in heavy fermions in the vicinity of a quantum critical point and anomalous transport properties in quantum wires. In contrast with models with either pure bosonic or pure fermionic impurities, the strong coupling fixed point is unstable against the conduction electron kinetic term under certain conditions. The stability region of the strong coupling fixed point coincides with the region where the partially screened, effective impurity repels the electrons on adjacent sites. In the instability region, the impurity tends to attract (N1)(N-1) electrons to the neighboring sites, giving rise to a double-stage Kondo effect with additional screening of the impurity.Comment: 10 pages, 2 figures, Proceedings of the NATO Workshop on "Concepts in Electron Correlations", Hvar,October 200

    Mobile communication base station antenna measurement using unmanned aerial vehicle

    Get PDF
    Traditional base station antenna measurement methods conducted with professional worker climbing towers tend to raise safety and inefficiency concerns in practical application. Designed to address the above problems, this paper proposes an intelligent and fully automatic antenna measurement unmanned aerial vehicle (UAV) system for mobile communication base station. Firstly, an antenna database, containing 19,715 images, named UAV-Antenna is constructed by image capturing with the help of UAVs flying around various base stations. Secondly, Mask R-CNN is adopted to train an optimal instance segmentation model on UAV-Antenna. Then, pixel coordinates and threshold are utilized for measuring antenna quantity and separate all antenna data for further measuring. Finally, a least squares method is employed for measuring antenna parameters. Experimental results show that the proposed method can not only satisfy the industry application standards, but also guarantee safety of labors and efficiency of performance

    Spin wave theory for antiferromagnetic XXZ spin model on a triangle lattice in the presence of an external magnetic field

    Full text link
    Spin wave theory is applied to a quantum antiferromagnetic XXZ model on a triangle lattice in the presence of an in-plane magnetic field. The effect of the field is found to enhance the quantum fluctuation and to reduce the sublattice magnetization at the intermediate field strength in the anisotropic case. The possible implication to the field driven quantum phase transition from a spin solid to a spin liquid is discussed.Comment: 5 pages,4 figure

    Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films

    Full text link
    We report the discovery of mesoscale regions with distinctive magnetic properties in epitaxial La1x_{1-x}Srx_{x}MnO3_{3} films which exhibit tunneling-like magnetoresistance across grain boundaries. By using temperature-dependent magnetic force microscopy we observe that the mesoscale regions are formed near the grain boundaries and have a different Curie temperature (up to 20 K {\it higher}) than the grain interiors. Our images provide direct evidence for previous speculations that the grain boundaries in thin films are not magnetically and electronically sharp interfaces. The size of the mesoscale regions varies with temperature and nature of the underlying defect.Comment: 4 pages of text, 4 figure
    corecore