5 research outputs found

    A Reduction in Video Gaming Time Produced a Decrease in Brain Activity

    Get PDF
    This study examines whether a decrease in brain development is observable after players have reduced their video gaming time over a period of 1 year. Both video gaming experts and non-experts were recruited, whose resting-state functional MRI (fMRI) data were collected at the beginning and the end of the study. Immediately after the first scan, the participants were instructed to spend no more than 3 h on video gaming weekly for 1 year. The results showed decreased self-reported video gaming skills and decreased amplitude of low-frequency fluctuation (ALFF) in the experts at the end of the study, demonstrating that a reduction in video gaming time over a period of 1 year produced a decrease in brain development. The non-experts served as a control group and had no significant changes. The findings support the adaptive effect of video gaming experience on brain and cognitive development

    Action Real-Time Strategy Gaming Experience Related to Increased Attentional Resources: An Attentional Blink Study

    Get PDF
    Action real-time strategy gaming (ARSG) is a cognitively demanding task which requires attention, sensorimotor skills, team cooperation, and strategy-making abilities. A recent study found that ARSG experts had superior visual selective attention (VSA) for detecting the location of a moving object that could appear in one of 24 different peripheral locations (Qiu et al., 2018), suggesting that ARSG experience is related to improvements in the spatial component of VSA. However, the influence of ARSG experience on the temporal component of VSA—the detection of an item among a sequence of items presented consecutively and quickly at a single location—still remains understudied. Using behavioral and electrophysiological measures, this study examined whether ARSG experts had superior temporal VSA performance compared to non-experts in an attentional blink (AB) task, which is typically used to examine temporal VSA. The results showed that the experts outperformed the non-experts in their detection rates of targets. Furthermore, compared to the non-experts, the experts had faster information processing as indicated by earlier P3 peak latencies in an AB period, more attentional resources distributed to targets as indicated by stronger P3 amplitudes, and a more flexible deployment of attentional resources. These findings suggest that experts were less prone to the AB effect. Thus, long-term ARSG experience is related to improvements in temporal VSA. The current findings support the benefit of video gaming experience on the development of VSA

    Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through downregulation of PAK1-STAT3/NF-κB signaling

    No full text
    Gastric cancer (GC) ranks as the fourth most frequent in incidence and second in mortality among all cancers worldwide. The development of effective treatment approaches is an urgent requirement. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) have been found to be present in a variety of tumoral tissues and cell lines. Therefore the inhibition of GHRH-R was proposed as a promising approach for the treatment of these cancers. However, little is known about GHRH-R and the relevant therapy in human GC. By survival analyses of multiple cohorts of GC patients, we identified that increased GHRH-R in tumor specimens correlates with poor survival and is an independent predictor of patient prognosis. We next showed that MIA-602, a highly potent GHRH-R antagonist, effectively inhibited GC growth in cultured cells. Further, this inhibitory effect was verified in multiple models of human GC cell lines xenografted into nude mice. Mechanistically, GHRH-R antagonists target GHRH-R and down-regulate the p21-activated kinase 1 (PAK1)-mediated signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB) inflammatory pathway. Overall, our studies establish GHRH-R as a potential molecular target in human GC and suggest treatment with GHRH-R antagonist as a promising therapeutic intervention for this cancer
    corecore