9 research outputs found

    A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Get PDF
    A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe3O4/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO2/prussian blue (PB)/Nafion (Nf) composite membrane by an external magnetic field. Thus, the biosensor (SPCE│CNTs/ZrO2/PB/Nf│GMP-AChE) for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM) and X-ray fluorescence spectrometery (XRFS) and its electrochemical properties were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The degree of inhibition (A%) of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh). In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10−3–10 ng·mL−1 with a detection limit of 5.6 × 10−4 ng·mL−1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC) method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis

    Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique

    Get PDF
    Objectives/Hypothesis: To develop a deep-learning–based computer-aided diagnosis system for distinguishing laryngeal neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of laryngoscopy findings. Study Design: Retrospective study. Methods: A total of 24,667 laryngoscopy images (normal, vocal nodule, polyps, leukoplakia and malignancy) were collected to develop and test a convolutional neural network (CNN)-based classifier. A comparison between the proposed CNN-based classifier and the clinical visual assessments (CVAs) by 12 otolaryngologists was conducted. Results: In the independent testing dataset, an overall accuracy of 96.24% was achieved; for leukoplakia, benign, malignancy, normal, and vocal nodule, the sensitivity and specificity were 92.8% vs. 98.9%, 97% vs. 99.7%, 89% vs. 99.3%, 99.0% vs. 99.4%, and 97.2% vs. 99.1%, respectively. Furthermore, when compared with CVAs on the randomly selected test dataset, the CNN-based classifier outperformed physicians for most laryngeal conditions, with striking improvements in the ability to distinguish nodules (98% vs. 45%, P <.001), polyps (91% vs. 86%, P <.001), leukoplakia (91% vs. 65%, P <.001), and malignancy (90% vs. 54%, P <.001). Conclusions: The CNN-based classifier can provide a valuable reference for the diagnosis of laryngeal neoplasms during laryngoscopy, especially for distinguishing benign, precancerous, and cancer lesions. Level of Evidence: NA Laryngoscope, 130:E686–E693, 2020

    Clinical efficacy of high-flow nasal humidified oxygen therapy in patients with hypoxemia.

    No full text
    To evaluate the effectiveness of high-flow nasal humidified oxygen (HFNHO) therapy in patients with mild hypoxemia after extubation. This study included 316 patients with mild hypoxemia after extubation from May 2016 to May 2018 from two intensive care units in China. Compare the effects of the Venturi Mask and High-Flow Nasal Humidified Oxygen (HFNHO) therapy on Heart Rate (HR), Respiratory Rate (RR), Oxygen Saturation (SpO2), Oxygen Partial Pressure (PO2), Partial Pressure Of Carbon Dioxide (PCO2), Oxygenation Index (PO2/FiO2) after extubation, the use of noninvasive mechanical ventilation and tracheal intubation after treatment failure were observed and recorded. Patients have both lower HR and RR than those who received mask treatment (75.4±18.5 vs. 83.0±20.4, p = 0.0004; 18±6.5 vs. 23.6±10.3, p<0.001, respectively). There was significant difference between those who had HFNHO and mask administration's SpO2 and PO2 (94.1±6.4 vs. 87.5±1.5, p<0.001; 88.16±2.9 vs. 77.3±2.3, p<0.001, respectively). For the HFNHO group, patients had lower PCO2 with the mask group. (41.3±0.99 vs 42.2±1.2, p<0.001). On the other hand, the levels of PO2/FiO2 was significantly higher in the HFNHO Group, (181.0±8.3 vs. 157.2±4.9, p<0.05). We concluded HFNHO therapy could significantly relieve the symptoms of dyspnea, improve oxygenation, reduce the use of noninvasive mechanical ventilation and reduce the rate of secondary tracheal intubation in patients with mild hypoxemia after extubation

    Radiomics features on radiotherapy treatment planning CT can predict patient survival in locally advanced rectal cancer patients

    No full text
    This retrospective study was to investigate whether radiomics feature come from radiotherapy treatment planning CT can predict prognosis in locally advanced rectal cancer patients treated with neoadjuvant chemoradiation followed by surgery. Four-hundred-eleven locally advanced rectal cancer patients which were treated with neoadjuvant chemoradiation enrolled in this study. All patients' radiotherapy treatment planning CTs were collected. Tumor was delineated on these CTs by physicians. An in-house radiomics software was used to calculate 271 radiomics features. The results of test-retest and contour-recontour studies were used to filter stable radiomics (Spearman correlation coefficient > 0.7). Twenty-one radiomics features were final enrolled. The performance of prediction model with the radiomics or clinical features were calculated. The clinical outcomes include local control, distant control, disease-free survival (DFS) and overall survival (OS). Model performance C-index was evaluated by C-index. Patients are divided into two groups by cluster results. The results of chi-square test revealed that the radiomics feature cluster is independent of clinical features. Patients have significant differences in OS (p = 0.032, log rank test) for these two groups. By supervised modeling, radiomics features can improve the prediction power of OS from 0.672 [0.617 0.728] with clinical features only to 0.730 [0.658 0.801]. In conclusion, the radiomics features from radiotherapy CT can potentially predict OS for locally advanced rectal cancer patients with neoadjuvant chemoradiation treatment

    The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing

    Get PDF
    Intense and frequent new particle formation (NPF) events have been observed in polluted urban environments, yet the dominant mechanisms are still under debate. To understand the key species and governing processes of NPF in polluted urban environments, we conducted comprehensive measurements in downtown Beijing during January-March, 2018. We performed detailed analyses on sulfuric acid cluster composition and budget, as well as the chemical and physical properties of oxidized organic molecules (OOMs). Our results demonstrate that the fast clustering of sulfuric acid (H2SO4) and base molecules triggered the NPF events, and OOMs further helped grow the newly formed particles toward climate- and health-relevant sizes. This synergistic role of H2SO4, base species, and OOMs in NPF is likely representative of polluted urban environments where abundant H2SO4 and base species usually co-exist, and OOMs are with moderately low volatility when produced under high NOx concentrations.Peer reviewe
    corecore